Article contents
The algebra of functions with Fourier transforms in a given function space
Published online by Cambridge University Press: 17 April 2009
Abstract
Let G be a locally compact abelian group and Ĝ be its dual group. For 1 ≤ p < ∞, let Ap (G) denote the set of all those functions in L1(G) whose Fourier transforms belong to Lp (Ĝ). Let M(Ap (G)) denote the set of all functions φ belonging to L∞(Ĝ) such that is Fourier transform of an L1-function on G whenever f belongs to Ap (G). For 1 ≤ p < q < ∞, we prove that Ap (G) Aq(G) provided G is nondiscrete. As an application of this result we prove that if G is an infinite compact abelian group and 1 ≤ p ≤ 4 then lp (Ĝ) M(Ap(G)), and if p > 4 then there exists ψ є lp (Ĝ) such that ψ does not belong to M(Ap (G)).
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1973
References
- 4
- Cited by