No CrossRef data available.
Article contents
TRANSCENDENCE OF GENERALISED EULER–KRONECKER CONSTANTS
Published online by Cambridge University Press: 10 July 2023
Abstract
We introduce some generalisations of the Euler–Kronecker constant of a number field and study their arithmetic nature.
MSC classification
Secondary:
11J81: Transcendence (general theory)
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.
Footnotes
The second author would like to thank Number Theory plan project, Department of Atomic Energy, for financial support.
References
Diamond, H. and Ford, K., ‘Generalized Euler constants’, Math. Proc. Cambridge Philos. Soc. 145(1) (2008), 27–41.CrossRefGoogle Scholar
Euler, L., ‘De Progressionibus harmonicis observationes’, Comment. Acad. Sci. Petropolitanae 7 (1740), 150–161.Google Scholar
Ihara, Y., ‘The Euler–Kronecker invariants in various families of global fields’, in: Arithmetic, Geometry and Coding Theory (AGCT 2005) (eds. F. Rodier and S. Vladut), Séminaire et Congrès, 21 (Société Mathématique de France, Paris, 2006), 79–102.Google Scholar
Lagarias, J. C., ‘Euler’s constant: Euler’s work and modern developments’, Bull. Amer. Math. Soc. 50 (2013), 527–628.CrossRefGoogle Scholar
Murty, M. R. and Esmonde, J., Problems in Algebraic Number Theory (Springer, New York, 2005).Google Scholar
Murty, M. R. and Zaytseva, A., ‘Transcendence of generalized Euler constants’, Amer. Math. Monthly 120(1) (2013), 48–54.CrossRefGoogle Scholar
Rosen, M., ‘A generalization of Mertens’ theorem’, J. Ramanujan Math. Soc. 14(1) (1999), 1–19.Google Scholar