Article contents
ON A PROBLEM OF RICHARD GUY
Published online by Cambridge University Press: 13 September 2021
Abstract
In the 1993 Western Number Theory Conference, Richard Guy proposed Problem 93:31, which asks for integers n representable by
${(x+y+z)^3}/{xyz}$
, where
$x,\,y,\,z$
are integers, preferably with positive integer solutions. We show that the representation
$n={(x+y+z)^3}/{xyz}$
is impossible in positive integers
$x,\,y,\,z$
if
$n=4^{k}(a^2+b^2)$
, where
$k,\,a,\,b\in \mathbb {Z}^{+}$
are such that
$k\geq 3$
and
$2\nmid a+b$
.
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 105 , Issue 1 , February 2022 , pp. 12 - 18
- Copyright
- © 2021 Australian Mathematical Publishing Association Inc.
Footnotes
The author is supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) (grant number 10.04-2019.314).
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230103145337780-0815:S000497272100068X:S000497272100068X_inline200.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230103145337780-0815:S000497272100068X:S000497272100068X_inline201.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230103145337780-0815:S000497272100068X:S000497272100068X_inline202.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230103145337780-0815:S000497272100068X:S000497272100068X_inline203.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230103145337780-0815:S000497272100068X:S000497272100068X_inline204.png?pub-status=live)
- 2
- Cited by