Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T11:19:45.255Z Has data issue: false hasContentIssue false

A NOTE ON SPIRALLIKE FUNCTIONS

Published online by Cambridge University Press:  25 March 2021

Y. J. SIM
Affiliation:
Department of Mathematics, Kyungsung University, Busan 48434, Korea e-mail: [email protected]
D. K. THOMAS*
Affiliation:
Department of Mathematics, Swansea University, Bay Campus, Swansea SA1 8EN, UK

Abstract

Let f be analytic in the unit disk $\mathbb {D}=\{z\in \mathbb {C}:|z|<1 \}$ and let ${\mathcal S}$ be the subclass of normalised univalent functions with $f(0)=0$ and $f'(0)=1$ , given by $f(z)=z+\sum _{n=2}^{\infty }a_n z^n$ . Let F be the inverse function of f, given by $F(\omega )=\omega +\sum _{n=2}^{\infty }A_n \omega ^n$ for $|\omega |\le r_0(f)$ . Denote by $ \mathcal {S}_p^{* }(\alpha )$ the subset of $ \mathcal {S}$ consisting of the spirallike functions of order $\alpha $ in $\mathbb {D}$ , that is, functions satisfying

$$\begin{align*}{\mathrm{Re}} \ \bigg\{e^{-i\gamma}\dfrac{zf'(z)}{f(z)}\bigg\}>\alpha\cos \gamma, \end{align*}$$

for $z\in \mathbb {D}$ , $0\le \alpha <1$ and $\gamma \in (-\pi /2,\pi /2)$ . We give sharp upper and lower bounds for both $ |a_3|-|a_2| $ and $ |A_3|-|A_2| $ when $f\in \mathcal {S}_p^{* }(\alpha )$ , thus solving an open problem and presenting some new inequalities for coefficient differences.

Type
Research Article
Copyright
© 2021 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arora, V., Ponnusamy, S. and Sahoo, S., ‘Successive coefficients for spirallike and related functions’, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), 29692979.CrossRefGoogle Scholar
de Branges, L., ‘A proof of the Bieberbach conjecture’, Acta Math. 154(1–2) (1985), 137152.CrossRefGoogle Scholar
Duren, P. L., Univalent Functions, Grundlehren der mathematischen Wissenschaften, 259 (Springer-Verlag, New York, 1983).Google Scholar
Grinspan, A. Z., ‘The sharpening of the difference of the moduli of adjacent coefficients of schlicht functions’, Some Problems in Modern Function Theory, Proc. Conf. Modern Problems of Geometric Theory of Functions (in Russian) (Akademii Nauk SSSR, Novosibirsk, 1976), 4145.Google Scholar
Hayman, W. K., ‘On successive coefficients of univalent functions’, J. Lond. Math. Soc. 38 (1963), 228243.CrossRefGoogle Scholar
Ilina, L. P., ‘The relative growth of nearby coefficients of schlicht functions’, Mat. Zametki 4 (1968), 715722.Google Scholar
Leung, Y., ‘Successive coefficients of starlike functions’, Bull. Lond. Math. Soc. 10 (1978), 193196.CrossRefGoogle Scholar
Li, M., ‘A note on successive coefficients of spirallike functions’, Filomat 32(4) (2018), 11991207.CrossRefGoogle Scholar
Obradović, M., Thomas, D. K. and Tuneski, N., ‘On the difference of coefficients of univalent functions’, Filomat (to appear), Preprint, 2020, arXiv:2004.06369v.Google Scholar
Sim, Y. J. and Thomas, D. K., ‘On the difference of coefficients of starlike and convex functions’, Mathematics 8(9) (2020), 1521.CrossRefGoogle Scholar
Sim, Y. J. and Thomas, D. K., ‘On the difference of inverse coefficients of univalent functions’, Symmetry 12(12) (2020), 2040.CrossRefGoogle Scholar