Hostname: page-component-f554764f5-nwwvg Total loading time: 0 Render date: 2025-04-23T00:32:56.547Z Has data issue: false hasContentIssue false

NONRELATIVISTIC LIMIT FOR THE TRAVELLING WAVES OF THE PSEUDORELATIVISTIC HARTREE EQUATION

Published online by Cambridge University Press:  26 December 2024

YUANHUI CHEN*
Affiliation:
School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
QINGXUAN WANG
Affiliation:
School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China e-mail: [email protected]

Abstract

We consider the pseudorelativistic Hartree equation

$$ \begin{align*} i\partial_t\psi=(\sqrt{-c^2\Delta +m^2c^4}-mc^2)\psi-(|x|^{-1}*|\psi|^2)\psi\quad \text{with } (t,x)\in\mathbb{R}\times\mathbb{R}^3, \end{align*} $$

which describes the dynamics of pseudorelativistic boson stars in the mean-field limit. We study the travelling waves of the form $\psi (t,x)=e^{it\mu }\varphi _{c}(x-vt)$, where $v\in \mathbb {R}^3$ denotes the travelling velocity. We prove that $\varphi _{c}$ converges strongly to the minimiser $\varphi _{\infty }$ of the limit energy $E_{\infty }(N)$ in $H^1(\mathbb {R}^3)$ as the light speed $c\to \infty $, where $E_{\infty }(N)$ is the corresponding energy for the limit equation

$$ \begin{align*} -\frac{1}{2m}\Delta\varphi_{\infty}+i(v\cdot\nabla)\varphi_{\infty}-({|x|^{-1}}*|\varphi_{\infty}|^2)\varphi_{\infty}=-\lambda\varphi_{\infty}. \end{align*} $$

Since the operator $-\Delta $ is the classical kinetic operator, we call this the nonrelativistic limit. We prove the existence of the minimiser for the limit energy $E_{\infty }(N)$ by using concentration-compactness arguments.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Q. Wang was partially supported by the National Natural Science Foundation of China (grant no. 11801519).

References

Choi, W. and Seok, J., ‘Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrödinger equations’, J. Math. Phys. 57 (2016), Article no. 021510.CrossRefGoogle Scholar
Choi, W., Seok, J. and Hong, Y., ‘Optimal convergence rate and regularity of nonrelativistic limit for the nonlinear pseudo-relativistic equations’, J. Funct. Anal. 274 (2018), 695722.CrossRefGoogle Scholar
Elgart, A. and Schlein, B., ‘Mean field dynamics of Boson stars’, Comm. Pure Appl. Math. 60 (2007), 500545.CrossRefGoogle Scholar
Fröhlich, J., Jonsson, B. L. G. and Lenzmann, E., ‘Boson stars as solitary waves’, Comm. Math. Phys. 274 (2007), 130.CrossRefGoogle Scholar
Guo, Y. and Zeng, X., ‘The Lieb–Yau conjecture for ground states of pseudo-relativistic Boson stars’, J. Funct. Anal. 278 (2020), Article no. 108510.CrossRefGoogle Scholar
Herr, S. and Lenzmann, E., ‘The Boson star equation with initial data of low regularity’, Nonlinear Anal. 97 (2014), 125137.CrossRefGoogle Scholar
Lenzmann, E., ‘Well-posedness for semi-relativistic Hartree equations of critical type’, Math. Phys. Anal. Geom. 10 (2007), 4364.CrossRefGoogle Scholar
Lenzmann, E., ‘Uniqueness of ground states for pseudo-relativistic Hartree equations’, Anal. PDE 2 (2009), 127.CrossRefGoogle Scholar
Lieb, E. and Loss, M., Analysis, 2nd edn, Graduate Studies in Mathematics, 14 (American Mathematical Society, Providence, RI, 2001).Google Scholar
Lions, P., ‘The concentration-compactness principle in the calculus of variations: the locally compact case, Part I’, Ann. Inst. H. Poincaré Anal. Non Linéaire. 1 (1984), 109145.CrossRefGoogle Scholar
Lions, P., ‘The concentration-compactness principle in the calculus of variations: the locally compact case, Part II’, Ann. Inst. H. Poincaré Anal. Non Linéaire. 1 (1984), 223283.CrossRefGoogle Scholar
Melgaard, M. and Zongo, F. D. Y., ‘Solitary waves and excited states for Boson stars’, Anal. Appl. 20 (2022), 285302.CrossRefGoogle Scholar
Wang, Q., ‘A blow-up result for the travelling waves of the pseudo-relativistic Hartree equation with small velocity’, Math. Methods Appl. Sci. 44 (2021), 1040310415.CrossRefGoogle Scholar