Hostname: page-component-6587cd75c8-4pd2k Total loading time: 0 Render date: 2025-04-23T11:14:54.568Z Has data issue: false hasContentIssue false

DISCREPANCY BOUNDS FOR THE DISTRIBUTION OF RANKIN–SELBERG L-FUNCTIONS

Published online by Cambridge University Press:  18 October 2024

XIAO PENG*
Affiliation:
School of Computer Science and Engineering, Macau University of Science and Technology, Macau, PR China

Abstract

We investigate the discrepancy between the distributions of the random variable $\log L (\sigma , f \times f, X)$ and that of $\log L(\sigma +it, f \times f)$, that is,

$$ \begin{align*} D_{\sigma} (T) := \sup_{\mathcal{R}} |\mathbb{P}_T(\log L(\sigma+it, f \times f) \in \mathcal{R}) - \mathbb{P}(\log L(\sigma, f \times f, X) \in \mathcal{R})|, \end{align*} $$

where the supremum is taken over rectangles $\mathcal {R}$ with sides parallel to the coordinate axes. For fixed $T>3$ and $2/3 <\sigma _0 < \sigma < 1$, we prove that

$$ \begin{align*} D_{\sigma} (T) \ll \frac{1}{(\log T)^{\sigma}}. \end{align*} $$

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The author is supported by The Science and Technology Development Fund, Macau SAR (File no. 0084/2022/A).

References

Bohr, H. and Jessen, B., ‘Über die Werteverteilung der Riemannschen Zetafunktion’, Acta Math. 54 (1930), 135.CrossRefGoogle Scholar
Deligne, P., ‘La conjecture de Weil. I’, Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273307.CrossRefGoogle Scholar
Dong, Z., Wang, W. and Zhang, H., ‘Distribution of Dirichlet $L$ -functions’, Mathematika 69 (2023), 719750.CrossRefGoogle Scholar
Harman, G. and Matsumoto, K., ‘Discrepancy estimates for the value-distribution of the Riemann zeta-function, IV’, J. Lond. Math. Soc. (2) 50 (1994), 1724.CrossRefGoogle Scholar
Huang, J., Zhai, W. and Zhang, D., ‘Higher power moments of symmetric square $L$ -function’, J. Number Theory 243 (2023), 495517.CrossRefGoogle Scholar
Iwaniec, H. and Kowalski, E., Analytic Number Theory, American Mathematical Society Colloquium Publications, 53 (American Mathematical Society, Providence, RI, 2021).Google Scholar
Lamzouri, Y., ‘Distribution of values of $L$ -functions at the edge of the critical strip’, Proc. Lond. Math. Soc. (3) 100 (2010), 835863.CrossRefGoogle Scholar
Lamzouri, Y., Lester, S. and Radziwiłł, M., ‘Discrepancy bounds for the distribution of the Riemann zeta-function and applications’, J. Anal. Math. 139 (2019), 453494.CrossRefGoogle Scholar
Lee, Y., ‘Discrepancy bounds for the distribution of $L$ -functions near the critical line’, Preprint, 2023, arXiv:2304.03415.Google Scholar
, G., ‘Shifted convolution sums of Fourier coefficients with divisor functions’, Acta Math. Hungar. 146 (2015), 8697.CrossRefGoogle Scholar
Tsang, K. M., The Distribution of the Values of the Riemann Zeta-function, PhD Thesis (Princeton University, 1984).Google Scholar
Xiao, X. and Zhai, S., ‘Discrepancy bounds for distribution of automorphic $L$ -functions’, Lith. Math. J. 61 (2021), 550563.CrossRefGoogle Scholar
Ye, Y. and Zhang, D., ‘Zero density for automorphic $L$ -functions’, J. Number Theory 133 (2013), 38773901.CrossRefGoogle Scholar