Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T17:55:58.941Z Has data issue: false hasContentIssue false

A Survey of Mučnik and Medvedev Degrees

Published online by Cambridge University Press:  15 January 2014

Peter G. Hinman*
Affiliation:
Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USAE-mail: [email protected]

Abstract

We survey the theory of Mučnik (weak) and Medvedev (strong) degrees of subsets of ωω with particular attention to the degrees of subsets of ω2. Sections 1–6 present the major definitions and results in a uniform notation. Sections 7–16 present proofs, some more complete than others, of the major results of the subject together with much of the required background material.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Barmpalias, G., Cenzer, D., Remmel, J. B., and Weber, R., K-triviality of closed sets and continuous functions, Journal of Logic and Computation, vol. 19 (2009), pp. 316.CrossRefGoogle Scholar
[2] Binns, S., A splitting theorem for the Medvedev and Muchnik lattices, Mathematical Logic Quarterly, vol. 49 (2003), no. 4, pp. 327335.CrossRefGoogle Scholar
[3] Binns, S. and Simpson, S., Embeddings into the Medvedev and Muchnik lattices of classes, Archive for Mathematical Logic, vol. 43 (2004), no. 3, pp. 399414.CrossRefGoogle Scholar
[4] Cenzer, D., classes in computability theory, Handbook of computability theory, Studies in Logic and the Foundation of Mathematics, 140, North-Holland, Amsterdam, 1999, pp. 3785.Google Scholar
[5] Cenzer, D. and Hinman, P. G., Density of the Medvedev lattice of classes, Archive for Mathematical Logic, vol. 42 (2003), pp. 583600.CrossRefGoogle Scholar
[6] Cenzer, D., Degrees of difficulty of generalized r.e. separating classes, Archive for Mathematical Logic, vol. 46 (2008), no. 7–8, pp. 629647.Google Scholar
[7] Cenzer, D. and Remmel, J. B., classes in mathematics, Handbook of recursive mathematics, Studies in Logic and the Foundation of Mathematics, 139, vol. 2, North-Holland, Amsterdam, 1998, pp. 623821.Google Scholar
[8] Cole, J. A., Embedding FD (ω) into Ps densely, Archive for Mathematical Logic, vol. 46 (2008), no. 7–8, pp. 649664.CrossRefGoogle Scholar
[9] Cole, J. A. and Kihara, T., The ∀∃-theory of the effectively closed Medvedev degrees is decidable, Archive for Mathematical Logic, vol. 49 (2010), no. 1, pp. 116.CrossRefGoogle Scholar
[10] Dobrinen, N. L. and Simpson, S. G., Almost everywhere domination, The Journal of Symbolic Logic, vol. 69 (2004), no. 3, pp. 914922.CrossRefGoogle Scholar
[11] Downey, R. G and Hirschfeldt, D., Algorithmic randomness and complexity, Springer, Berlin, 2010.Google Scholar
[12] Downey, R. G. and Reimann, J., Algorithmic randomness, http://www.scholarpedia.org/article/Algorithmic_randomness.Google Scholar
[13] Dyment, E. Z., Certain properties of the Medvedev lattice, Rossiľskaya Akademiy Nauk. Matematicheskiľ Sbornik (NS), vol. 101, no. 143, pp. 360379, Mathematics of the USSR Sbornik , vol. 30 (1976), pp. 321-340 (English translation).Google Scholar
[14] FOM (Foundations of Mathematics), online forum archive, http://www.cs.nyu.edu/pipermail/fom/. Google Scholar
[15] Higuchi, K., Effectively closed mass problems and intuitionism, preprint.Google Scholar
[16] Hinman, P. G., Recursion-theoretic hierarchies, Springer-Verlag, Berlin Heidelberg New York, 1978.Google Scholar
[17] Hinman, P. G., Fundamentals of mathematical logic, A K Peters, Ltd., Wellesley, MA, 2005.Google Scholar
[18] Jankov, V. A., Calculus of the weak law of the excluded middle. (Russian), Rossiľskaya Akademiya Nauk Izvestiya. Seriya Matematicheskaya, vol. 32 (1968), pp. 10441051.Google Scholar
[19] Jockusch, C. G. Jr., Degrees offunctions with no fixed points, Logic, methodology and philosophy of science VIII (Fenstad, J. E. et al., editors), Elsevier, 1989, pp. 191201.Google Scholar
[20] Jockusch, C. G. Jr., Lerman, M., Soare, R. I., and Solovay, R. M., Recursively enumerable sets modulo iterated jumps and extensions of Arslanov's completeness criterion, The Journal of Symbolic Logic, vol. 54 (1989), pp. 12881323.CrossRefGoogle Scholar
[21] Jockusch, C. G. Jr. and Soare, R. I., classes and degrees of theories, Transactions of the American Mathematical Society, vol. 173 (1972), pp. 3356.Google Scholar
[22] Kleene, S. C., Introduction to metamathematics, D.Van Nostrand Co., Inc., New York, 1952.Google Scholar
[23] Kreisel, G., A variant to Hilbert's theory of the foundations of arithmetic, British Journal for the Philosophy of Science, vol. 4 (1953), pp. 107129, errata and corrigenda, ibid. vol. 4 (1954) p. 357.CrossRefGoogle Scholar
[24] Kumabe, M. and Lewis, A. E. M., A fixed-point-free minimal degree, Journal of the London Mathematical Society, Second Series, vol. 80 (2009), pp. 785797.CrossRefGoogle Scholar
[25] Lewis, A. E. M., Nies, A., and Sorbi, A., The first-order theories of the Medvedev and Muchnik lattice, Mathematical theory and computational practice, Springer Lecture Notes in Computer Science, vol. 5635, Springer, Berlin, pp. 324331.Google Scholar
[26] Lewis, A. E. M., Shore, R. A., and Sorbi, A., Topological aspects of the Medvedev lattice, Archive for Mathematical Logic, to appear.Google Scholar
[27] Martln-Löf, P., The definition of random sequences, Information and Control, vol. 9 (1966), pp. 602619.CrossRefGoogle Scholar
[28] Medvedev, Yu., Degrees of difficulty of the mass problem, Doklady Akademiya Nauk SSSR, vol. 104 (1955), pp. 501504.Google Scholar
[29] Muchnlk, A. A., On strong and weak reducibility of algorithmic problems, Sibirskii Mathematicheskii Zhurnal, vol. 4 (1963), pp. 13281341.Google Scholar
[30] Nies, A., Computability and randomness, Oxford Logic Guides, 51, Oxford University Press, Oxford, 2009.Google Scholar
[31] Platek, R. A., A note on the cardinality of the Medvedev lattice, Proceedings of the American Mathematical Society, vol. 25 (1970), p. 917.Google Scholar
[32] Rasiowa, H. and Sikorski, R., The mathematics of metamathematics, third ed., PWN-Polish Scientific Publishers, Warsaw, 1970.Google Scholar
[33] Rogers, H. Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York–Toronto, Ontario–London, 1967.Google Scholar
[34] Shafer, P., Coding true arithmetic in the Medvedev and Muchnik degrees, The Journal of Symbolic Logic, vol. 76 (2011), pp. 267288.CrossRefGoogle Scholar
[35] Shafer, P., Coding true arithmetic in the Medvedev degrees of classes, preprint.Google Scholar
[36] Shoenfield, J. R., Degrees of models, The Journal of Symbolic Logic, vol. 25 (1960), pp. 233237.CrossRefGoogle Scholar
[37] Simpson, S. G., Natural r.e. degrees; Pi0l classes, FOM Archives: http://www.cs.nyu.edu/pipermail/fom/1999-August/003327.html.Google Scholar
[38] Simpson, S. G., Mass problems and randomness, this Bulletin, vol. 11 (2005), no. 1, pp. 127.Google Scholar
[39] Simpson, S. G., sets and models of WKL0 , Reverse mathematics 2001, Lecture Notes in Logic 21, Association for Symbolic Logic, La Jolla, CA, 2005, pp. 352378.Google Scholar
[40] Simpson, S. G., An extension of the recursively enumerable Turing degrees, Journal of the London Mathematical Society, Second Series, vol. 75 (2007), no. 2, pp. 287297.Google Scholar
[41] Simpson, S. G., Mass problems and intuitionism, Notre Dame Journal of Formal Logic, vol. 49 (2008), no. 2, pp. 127136.Google Scholar
[42] Skvortsova, E. Z., Exact interpretation of the intuitionistic propositional calculus by means of an initial segment ofthe Medvedev lattice, Sibirskiľ Matematicheskiľ Zhurnal, vol. 29 (1988), no. 1, pp. 171178, 255; translation in Siberian Mathematical Journal, vol. 29 (1988), no. 1, pp. 133-139.Google Scholar
[43] Soare, R. I., Recursively enumerable sets and degrees, Springer-Verlag, Berlin, 1987.CrossRefGoogle Scholar
[44] Sorbi, A., Some remarks on the algebraic structure of the Medvedev lattice, The Journal of Symbolic Logic, vol. 55 (1990), no. 2, pp. 831853.Google Scholar
[45] Sorbi, A., Embedding Brouwer algebras in the Medvedev lattice, Notre Dame Journal of Formal Logic, vol. 32 (1991), no. 2, pp. 266275.CrossRefGoogle Scholar
[46] Sorbi, A., Some quotient lattices of the Medvedev lattice, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 37 (1991), pp. 167192.Google Scholar
[47] Sorbi, A., The Medvedev lattice of degrees of difficulty, Computability, enumerability, unsolvability: Directions in recursion theory (Cooper, S. B. et al., editors), London Mathematical Society Lecture Notes, vol. 224, Cambridge University Press, 1996, pp. 289312.CrossRefGoogle Scholar
[48] Sorbi, A. and Terwijn, S. A., Intermediate logics and factors of the Medvedev lattice, Annals of Pure and Applied Logic, vol. 155 (2008), no. 2, pp. 6985.CrossRefGoogle Scholar
[49] Sorbi, A., Intuitionistic logic and Muchnik degrees, preprint, arXiv: 1003.4489, 2010.Google Scholar
[51] Terwijn, S. A., The Medvedev lattice of computably closed sets, Archive for Mathematical Logic, vol. 45 (2006), no. 2, pp. 179190.Google Scholar
[52] Terwijn, S. A., On the structure of the Medvedev lattice, The Journal of Symbolic Logic, vol. 73 (2008), no. 2, pp. 543558.CrossRefGoogle Scholar
[53] Terwijn, S. A., The finite intervals of the Muchnik lattice, Transactions of the American Mathematical Society, to appear.Google Scholar