Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-20T10:53:24.475Z Has data issue: false hasContentIssue false

A DEFENSE OF LOGICISM

Published online by Cambridge University Press:  07 April 2025

HANNES LEITGEB
Affiliation:
MUNICH CENTER FOR MATHEMATICAL PHILOSOPHY LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN MUNICH GERMANY E-mail: [email protected]
URI NODELMAN
Affiliation:
PHILOSOPHY DEPARTMENT STANFORD UNIVERSITY STANFORD, CA 94305 USA E-mail: [email protected] E-mail: [email protected]
EDWARD N. ZALTA
Affiliation:
PHILOSOPHY DEPARTMENT STANFORD UNIVERSITY STANFORD, CA 94305 USA E-mail: [email protected] E-mail: [email protected]

Abstract

We argue that logicism, the thesis that mathematics is reducible to logic and analytic truths, is true. We do so by (a) developing a formal framework with comprehension and abstraction principles, (b) giving reasons for thinking that this framework is part of logic, (c) showing how the denotations for predicates and individual terms of an arbitrary mathematical theory can be viewed as logical objects that exist in the framework, and (d) showing how each theorem of a mathematical theory can be given an analytically true reading in the logical framework.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, D. and Zalta, E., Frege, Boolos, and logical objects . Journal of Philosophical Logic , vol. 33 (2004), no. 1, pp. 126.Google Scholar
Azzouni, J., Deflating Existential Consequence: A Case for Nominalism , Oxford University Press, New York, 2004.Google Scholar
Benacerraf, P., Frege: The last logicist , Midwest Studies in Philosophy: VI (French, P. et al., editors), University of Minnesota Press, Minneapolis, 1981, pp. 1736, page reference is to the reprint in Frege's Philosophy of Mathematics (W. Demopoulos, editor), Harvard University Press, Cambridge, 1995, pp. 41–67.Google Scholar
Blanchette, P., Frege’s Conception of Logic , Oxford University Press, New York, 2012.Google Scholar
Boolos, G., Saving Frege from contradiction . Proceedings of the Aristotelian Society , vol. 87 (198687), no. 1, pp. 137151; reprinted in [7], 171–182.Google Scholar
Boolos, G., The standard of equality of numbers , Meaning and Method: Essays in Honor of Hilary Putnam (Boolos, G., editor), Cambridge University Press, Cambridge, 1990, pp. 261277; page reference is to the reprint in [7], pp. 202–19.Google Scholar
Boolos, G., Logic, Logic, and Logic , Harvard University Press, Cambridge, 1998.Google Scholar
Brandom, R., Making it Explicit , Harvard University Press, Cambridge, 1998.Google Scholar
Bueno, O., Menzel, C., and Zalta, E., Worlds and propositions set free . Erkenntnis , vol. 79 (2014), pp. 797820.Google Scholar
Burgess, J., Review of kit Fine, the limits of abstraction . Notre Dame Journal of Formal Logic , vol. 44 (2003), no. 4, pp. 227251.Google Scholar
Burgess, J., Fixing Frege , Princeton University Press, Princeton, 2005.Google Scholar
Carnap, R., Die logizistische Grundlegung der Mathematik . Erkenntnis , vol. 2 (1931), pp. 91105.Google Scholar
Carnap, R., Meaning and Necessity , University of Chicago Press, Chicago, 1947.Google Scholar
Church, A., A formulation of the logic of sense and denotation , Structure, Method and Meaning: Essays in Honor of Henry M. Sheffer (Henle, P., et al., editors), Liberal Arts Press, New York, 1951, pp. 324.Google Scholar
Cook, R., Iteration one more time . Notre Dame Journal of Formal Logic , vol. 44 (2003), no. 2, pp. 6392.Google Scholar
Cook, R., Conservativeness, stability, and abstraction . The British Journal for the Philosophy of Science , vol. 63 (2012), no. 3, pp. 673696.Google Scholar
Cook, R. and Linnebo, Ø., Cardinality and acceptable abstraction . Notre Dame Journal of Formal Logic , vol. 59 (2018), no. 1, pp. 6174.Google Scholar
Dedekind, R., Was Sind Und Was Sollen Die Zahlen, Vieweg Und Sohn, Braunschweig, 1888; second ed., 1893; seventh ed., 1939.Google Scholar
Dummett, M., Frege: Philosophy of Mathematics , Harvard University Press, Cambridge, 1991.Google Scholar
Field, H., Realism, Mathematics, and Modality , Blackwell, Oxford, 1989.Google Scholar
Fine, K., The Limits of Abstraction , Clarendon Press, Oxford, 2002.Google Scholar
Francez, N. and Dyckhoff, R., Proof-theoretic semantics for a natural language fragment . Linguistics and Philosophy , vol. 33 (2010), pp. 447477.Google Scholar
Frege, G., Grundgesetze der Arithmetik , 2 Volumes, Band I (1893), Band II (1903), Verlag Hermann Pohle, Jena, 1893/1903.Google Scholar
Friedman, M., Geometry, convention, and the relativized a priori: Reichenbach, Schlick, and Carnap , Logic, Language, and the Structure of Scientific Theories (Salmon, W. and Wolters, G., editors), University of Pittsburgh Press, Pittsburgh, 1994 [1999], pp. 2134; reprinted in M. Friedman, Reconsidering Logical Positivism, Cambridge University Press, Cambridge, 1999, pp. 59–70. [Page reference is to the original.]Google Scholar
Gödel, K., What is Cantor’s continuum problem, reprinted in Kurt Gödel: Collected Works (S. Feferman et al., Volume II: Publications 1938–1974), Oxford University Press, Oxford, 1964/1990, pp. 254270.Google Scholar
Goldfarb, W., ‘ Frege’s conception of logic , Future Pasts: The Analytic Tradition in Twentieth Century Philosophy (Floyd, J. and Shieh, S., editors), Oxford University Press, Oxford, 2001, pp. 2541.Google Scholar
Hale, B., Abstract Objects , Blackwell, Oxford, 1987.Google Scholar
Heck, R., On the consistency of second-order contextual definitions . Noûs , vol. 26 (1992), pp. 491–94.Google Scholar
Hintikka, J., Towards a theory of definite descriptions . Analysis , vol. 19 (1959), no. 4, pp. 7985.Google Scholar
Hodes, H., Logicism and the ontological commitments of arithmetic . The Journal of Philosophy , vol. 81 (1984), no. 3, pp. 123149.Google Scholar
Hodes, H., Where do sets come from? . Journal of Symbolic Logic , vol. 56 (1991), no. 1, pp. 151175.Google Scholar
Klev, A. M., Dedekind’s logicism . Philosophia Mathematica , vol. 25 (2017), no. 3, pp. 341–36.Google Scholar
Leitgeb, H. and Ladyman, J., Criteria of identity and structuralist ontology . Philosophia Mathematica , vol. 16 (2008), no. 3, pp. 388396.Google Scholar
Linnebo, Ø., Frege’s conception of logic: From Kant to Grundgesetze . Manuscrito Revista Internacional de Filosofia Campinas , vol. 26 (2003), no. 2, pp. 235252.Google Scholar
Linnebo, Ø., Introduction , in [36] pp. 321329.Google Scholar
Linnebo, Ø. (editor), The Bad Company Problem , special issue. Synthese , vol. 70 (2009), no. 3 (October).Google Scholar
Linnebo, Ø., Thin Objects: An Abstractionist Account , Oxford University Press, Oxford, 2018.Google Scholar
Linsky, B. and Zalta, E., What is neologicism? Bulletin of Symbolic Logic , vol. 12 (2006), no. 1, pp. 6099.Google Scholar
MacBride, F., Speaking with shadows: A study of neo-logicism . British Journal for the Philosophy of Science , vol. 54 (2003), pp. 103163.Google Scholar
MacFarlane, J., Frege, Kant, and the logic in logicism . The Philosophical Review , vol. 111 (2002), no. 1, pp. 2565.Google Scholar
Nodelman, U. and Zalta, E., Foundations for mathematical structuralism . Mind , vol. 123 (2014), no. 489, pp. 3978.Google Scholar
Pelletier, F. J. and Zalta, E., How to say goodbye to the third man . Noûs , vol. 34 (2000), no. 2, pp. 165202.Google Scholar
Prawitz, D., Meaning approached via proofs . Synthese , vol. 148 (2006), pp. 507524.Google Scholar
Priest, G., Towards Non-Being: The Logic and Metaphysics of Intentionality , Clarendon, Oxford, revised second ed., 2005 [2016].Google Scholar
Rayo, A., Logicism reconsidered , The Oxford Handbook of Philosophy of Mathematics and Logic (Shapiro, S., editor), Oxford University Press, New York, 2005, pp. 203235.Google Scholar
Roeper, P., A vindication of logicism . Philosophia Mathematica , vol. 24 (2015), no. 3, pp. 360378.Google Scholar
Schroeder-Heister, P., Validity concepts in proof-theoretic semantics . Synthese , vol. 148 (2006), pp. 525571.Google Scholar
Sellars, W., Inference and meaning , Pure Pragmatics and Possible Worlds (Sicha, J., editor), Ridgeview, Atascadero, 1980, pp. 261313.Google Scholar
Tarski, A., Über den Begriff der logischen Folgerung , Actes du Congrès International de Philosophie Scientifique , Fasc. 7 (Actualitès Scientifiques et Industrielles, Vol. 394), Hermann et Cie, Paris, pp. 1–11; Translated as ‘on the Concept of Logical Consequence’, in Logic, Semantics, Metamathematics, second ed. (J. H. Woodger, translator) (Corcoran, J., editor), Hackett, Indianapolis, 1936 [1983], pp. 409420.Google Scholar
Tennant, N., Anti-Realism and Logic: Truth as Eternal , Clarendon, Oxford, 1987.Google Scholar
Tennant, N., A general theory of abstraction operations . The Philosophical Quarterly , vol. 54 (2004), no. 214, pp. 105133.Google Scholar
Tennant, N., The Logic of Number , Oxford University Press, Oxford, 2022.Google Scholar
Warren, J., Shadows of Syntax , Oxford University Press, New York, 2020.Google Scholar
Weir, A., Neo-fregeanism: An embarrassment of riches . Notre Dame Journal of Formal Logic , vol. 44 (2003), no. 1, pp. 1348.Google Scholar
Whitehead, A. N. and Russell, B., Principia Mathematica , 3 Volumes, Volume 1 (1910), Volume 2 (1912), Volume 3 (1913), Cambridge University Press, Cambridge, 1910–1913.Google Scholar
Wittgenstein, L., Philosophical Investigations (Anscombe, G. E. M. and Rhees, R., editors) (G. E. M. Anscombe, translator), Blackwell, Oxford, 1953.Google Scholar
Wright, C., Frege’s Conception of Numbers as Objects . Vol. 2. Aberdeen University Press, Aberdeen, 1983.Google Scholar
Zalta, E., Abstract Objects: An Introduction to Axiomatic Metaphysics , D. Reidel, Dodrecht, 1983.Google Scholar
Zalta, E., Intensional Logic and the Metaphysics of Intentionality , Bradford/MIT Press, Cambridge, 1988.Google Scholar
Zalta, E., Natural numbers and natural cardinals as abstract objects: A partial reconstruction of Frege’s Grundgesetze in object theory . Journal of Philosophical Logic , vol. 28 (1999), no. 6, pp. 619660.Google Scholar
Zalta, E., Neo-logicism? An ontological reduction of mathematics to metaphysics . Erkenntnis , vol. 53 (2000), nos. 1–2, pp. 219265.Google Scholar
Zalta, E., Essence and modality . Mind , vol. 115 (2006), no. 459, pp. 659693.Google Scholar
Zalta, E., Mathematical pluralism . Noûs , vol. 58 (2024), no. 2, pp. 306332.Google Scholar