Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T11:18:12.609Z Has data issue: false hasContentIssue false

Wing morphometry as a tool for correct identification of primary and secondary New World screwworm fly

Published online by Cambridge University Press:  23 March 2009

M.L. Lyra*
Affiliation:
Laboratório de Genética Animal, Centro de Biologia Molecular e Engenharia Genética e Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
L.M. Hatadani
Affiliation:
Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
A.M.L. de Azeredo-Espin
Affiliation:
Laboratório de Genética Animal, Centro de Biologia Molecular e Engenharia Genética e Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
L.B. Klaczko
Affiliation:
Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
*
*Author for correspondence Fax: 55-19-3521 10 89 E-mail: [email protected]

Abstract

Cochliomyia hominivorax and Cochliomyia macellaria are endemic Neotropical Calliphoridae species. The former causes severe myiasis in hosts while the latter is Sarcosaprophagous, but commonly found as a second invader in wounds. Due to the morphological similarity between them and the potential losses that C. hominivorax represents for cattle breeders, the rapid and correct identification of these two species is very important. In addition to a correct identification of these species, a good knowledge of C. hominivorax biology can be helpful for designing control programs. We applied geometric morphometric methods to assess wing differences between C. hominivorax and C. macellaria and conduct a preliminary analysis of wing morphological variation in C. hominivorax populations. Canonical variate analysis, using wing shape data, correctly classified 100% of the individuals analyzed according to sex and species. This result demonstrates that wing morphometry is a simple and reliable method for identifying C. hominivorax and C. macellaria samples and can be used to monitor C. hominivorax. Both species show sexual dimorphism, but in C. hominivorax it is magnified. We suggest that this may reflect different histories of selection pressures operating on males and females. Significant differences in wing size and shape were obtained among C. hominivorax populations, with little correlation with latitude. This result suggests that wing variation is also a good morphological marker for studying population variation in C. hominivorax.

Type
Research Paper
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, M.B. (1994) Sexual Selection. 624 pp. Princeton, N, Princeton University Press.CrossRefGoogle Scholar
Azeredo-Espin, A.M.L. (1987) Análise cariotípica, morfométrica e de compatibilidade sexual em linhagens brasileiras de Cochliomyia hominivorax (Diptera: Calliphoridae). PhD dissertation, University of Campinas (UNICAMP), Campinas, SP, Brazil.Google Scholar
Baumgartner, D.L. & Greenberg, B. (1985) Distribution and medical ecology of the blow flies (Diptera: Calliphoridae) of Peru. Annals of the Entomological Society of America 78, 565587.CrossRefGoogle Scholar
Bitner-Mathé, B.C. & Klaczko, L.B. (1999) Plasticity of Drosophila melanogaster wing morphology: effects of sex, temperature and density. Genetica 105, 203210.CrossRefGoogle ScholarPubMed
Bitner-Mathé, B.C., Peixoto, A.A. & Klaczko, L.B. (1995) Morphological variation in natural population of Drosophila mediopunctara: altitudinal cline, temporal changes and influence chromosome inversions. Heredity 75, 5461.CrossRefGoogle ScholarPubMed
Bonduriansky, R. (2006) Convergent Evolution of Sexual Shape Dimorphism in Diptera. Journal of Morphology 267, 602611.CrossRefGoogle ScholarPubMed
Bookstein, F.L. (1991) Morphometric Tools for Landmark Data. Cambridge, UK, Cambridge University Press.Google Scholar
Collinge, J.E., Hoffmann, A.A. & McKechnie, S.W. (2006) Altitudinal patterns for latitudinally varying traits and polymorphic markers in Drosophila melanogaster from eastern Australia. Journal of Evolutionary Biology 19(2), 473482.CrossRefGoogle ScholarPubMed
Crystal, M.M. (1967) Reprodutive behavior of laboratory reared screwworm flies (Diptera: Calliphoridae). Journal of Medical Entomology 4, 443450.CrossRefGoogle Scholar
Darwin, C. (1871) The Descent of Man and Selection in Relation to Sex. 620 pp. London, UK, John Murray.Google Scholar
David, J.R., Gibert, P., Mignon-Grasteau, S., Legout, H., Pétavy, G., Beaumont, C. & Moreteau, B. (2003) Genetic variability of sexual size dimorphism in natural population of Drosophila melanogaster: an isofemale-line approach. Journal of Genetics 82(3), 7988.CrossRefGoogle ScholarPubMed
David, J.R., Araripe, L.O., Bitner-Mathé, B.C., Capy, P., Goñi, B., Klaczko, L.B., Legout, H., Martins, M.B., Vouidibio, J., Yassin, A. & Moreteau, B. (2006a) Sexual dimorphism of body size and sternopleural bristle number: a comparison of geographic populations of an invasive cosmopolitan dosophilid. Genetica 128, 109122.CrossRefGoogle Scholar
David, J.R., Legout, H. & Moreteau, B. (2006b) Phenotypic plasticity of body size in a temperate population of Drosophila melanogaster: when the temperature-size rule does not apply. Journal of Genetics 85, 923.CrossRefGoogle Scholar
De León, D. & Fox, I. (1980) Canine minima myiasis in Puerto Rico – a case report. Journal of Agriculture of University of Puerto Rico 64, 126128.CrossRefGoogle Scholar
Dear, J.P. (1985) A revision of New World Crysomiini (Diptera: Calliphoridae). Revista Brasileira de Zoologia 3, 109169.CrossRefGoogle Scholar
Dujardin, J.-P., Le Pont, F. & Baylac, M. (2003) Geographical versus interspecific differentiation of sand flies (Diptera: Psychodidae): a landmark data analysis. Bulletin of Entomological Research 93, 8790.CrossRefGoogle ScholarPubMed
Fairbairn, D.J. (1997) Allometry for sexual size dimorphism: patterns and process in coevolution of body size in males and females. Annual Review of Ecology and Systematic 28, 659687.CrossRefGoogle Scholar
FAO: Food and Agriculture Organization of United Nations (1993) Manual for the Control of the Screwworm Fly Cochliomyia hominivorax (Coquerel), vol. 2. Guide for the identification of flies in the genus Cochliomyia (Diptera: Calliphoridae). 18 pp. Rome, Italy, FAO.Google Scholar
Gagné, R.J. & Peterson, R.D. II (1982) Physical changes in the genitalia of males of the screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae), caused by mating. Annals of the Entomological Society of America 75, 574578.CrossRefGoogle Scholar
Gilchrist, G.W., Huey, R.B., Balanya, J., Pascual, M. & Serra, L. (2004) Time series of evolution in action: a latitudinal cline in wing size in South American Drosophila subosbscura. Evolution 58(4), 768780.Google Scholar
Greenberg, B., Varela, C., Bornstein, A. & Hernandez, H. (1963) Salmonellae from flies in a Mexican slaughterhouse. American Journal of Hygiene 77, 177183.Google Scholar
Guillot, F.S., Brown, H.E. & Broce, A.B. (1978) Behavior of sexually active male screwworm flies. Annals of the Entomological Society of America 71(2), 199201.CrossRefGoogle Scholar
Guimarães, J.H. & Papavero, N. (1999) Myiasis in Man and Animals in the Neotropical Region. 308 pp. São Paulo, Brazil, Plêiade/FAPESP.Google Scholar
Hatadani, L.M. & Klaczko, L.B. (2008) Shape and size variation on the wing of Drosophila mediopunctata: influence of chromosome inversions and genotype-environment interaction. Genetica 133, 335342.CrossRefGoogle ScholarPubMed
Hoffmann, A.A. & Shirriffs, J. (2002) Geographic variation for wing shape in Drosophila serrata. Evolution 56(5), 10681073.Google Scholar
Houle, D., Mezey, J., Galpern, P. & Carter, A. (2003) Automated measurement of Drosophila wings. BMC Evolutionary Biology 3, 2537.CrossRefGoogle ScholarPubMed
Huey, R.B., Moreteau, B., Moreteau, J.C., Gibert, P., Gilchrist, G.W., Ives, A.R., Garland, T. Jr. & David, J.R. (2006) Sexual size dimorphism in a Drosophila clade, the D. obscura group. Zoology 109, 318330.CrossRefGoogle Scholar
IAEA/FAO: International Atomic Energy Agency/Food and Agriculture Organization (2000) Genetic sexing and population genetics of screwworms. 31 pp. International Atomic Energy Agency, 7–11 August 2000, Vienna, Austria.Google Scholar
Imasheva, A.G., Bubli, O.A. & Lazebny, O.E. (1994) Variation in wing length in Eurasian natural populations of Drosophila melanogaster. Heredity 72, 508514.CrossRefGoogle ScholarPubMed
Imasheva, A.G., Moreteau, B. & David, J.R. (2000) Growth temperature and genetic variability of wing dimensions in Drosophila: opposite trends in two sibling species. Genetical Research 76, 237247.CrossRefGoogle ScholarPubMed
Infante-Vargas, M.E. & Azeredo-Espin, A.M.L. (1995) Genetic Variability in Mitochondrial DNA of Screwworm Cochliomyia hominivorax (Diptera: Calliphoridae) from Brazil. Biochemical Genetics 33, 737756.Google Scholar
James, A.C., Azevedo, R.B.R. & Partridge, L. (1995) Cellular basis and developmental timing in a size cline of Drosophila melanogaster. Genetics 140, 659666.CrossRefGoogle Scholar
Josephson, R.L. & Krajden, S. (1993) An unusual nosocomial infection: nasotracheal myiasis. Journal of Otolaryngology 22, 4647.Google ScholarPubMed
Krafsur, E.S. (1978) Aggregation of male screwworm flies, Cochliomyia hominivorax (Coquerel) in South Texas (Diptera-Calliphoridae). Proceedings of the Entomological Society of Washington 80(2), 164170.Google Scholar
Krafsur, E.S. (2005) Role of population genetics in the sterile insect technique. pp. 389406in Dyck, V.A., Hendrichs, J. & Robinson, A.S. (Eds) Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. Dordrecht, The Netherlands, Springer.CrossRefGoogle Scholar
Lande, R. (1980) Sexual dimorphism, sexual selection and adaptation in phylogenic characters. Evolution 34, 292305.CrossRefGoogle Scholar
Litjens, P., Lessinger, A.C. & Azeredo-Espin, A.M.L. (2001). Characterization of screwworm flies Cochliomyia hominivorax and Cochliomyia macellaria by PCR-RFLP of mitochondrial DNA. Medical and Veterinary Entomology 15, 183188.CrossRefGoogle ScholarPubMed
Ludoski, J., Francuski, L., Vujic, A. & Milankov, V. (2008) The Cheilosia canicularis group (Diptera: Syrphidae): species delimitation and evolutionary relationships based on wing geometric morphometrics. Zootaxa 1825, 4050.CrossRefGoogle Scholar
Lyra, M.L., Fresia, P., Gama, S., Cristina, J., Klaczko, L.B. & Azeredo-Espin, A.M.L. (2005) Analysis of Mitochondrial DNA Variability and Genetic Structure in Populations of New World Screwworm Flies (Diptera: Calliphoridae) from Uruguay. Journal of Medical Entomology 42(4), 589595.CrossRefGoogle ScholarPubMed
Lyra, M.L., Klaczko, L.B. & Azeredo-Espin, A.M.L.Complex pattern of genetic variability in populations of the New World Screwworm fly revealed by mitochondrial DNA markers. Medical and Veterinary Entomology, in press.Google Scholar
Maynard Smith, J. (1978) The Evolution of Sex. 242 pp. Cambridge, UK, Cambridge University Press.Google Scholar
Partridge, L., Barrie, B., Fowler, K. & French, V. (1994) Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution 48, 12691276.CrossRefGoogle ScholarPubMed
Pétavy, G., Moreteau, B., Gibert, P., Morin, J.P. & David, J.R. (2001) Phenotypic plasticity of body size in Drosophila: effects of a daily periodicity of growth temperature in two sibling species. Physiological Entomology 26, 351361.CrossRefGoogle Scholar
Pomonis, J.G. (1989) Cuticular hydrocarbons of the screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae). Journal of Chemical Ecology 15, 23012317.CrossRefGoogle ScholarPubMed
Richardson, R.H., Ellison, J.R. & Averhoff, W.W. (1982) Mating types in Screwworm populations? Reply Science 218, 11431145.CrossRefGoogle ScholarPubMed
Roehrdanz, R.L. (1989) Intraspecific Genetic Variability in Mitochondrial DNA of the Screwworm Fly (Cochliomyia hominivorax). Biochemical Genetics 27(9–10), 551569.CrossRefGoogle ScholarPubMed
Rohlf, F.J. (2005a) TPSRegr software for windows version 1.31. Stony Book, NY, Department of Ecology and Evolution, State University of New York. http://life.bio.sunysb.edu/morph/ (accessed June 2008).Google Scholar
Rohlf, F.J. (2005b) TPSrelw software for windows version 1.42. Stony Book, NY, Department of Ecology and Evolution, State University of New York. http://life.bio.sunysb.edu/morph/ (accessed June 2008).Google Scholar
Rohlf, F.J. (2006) TPSDig software for windows version 2.11. Stony Book, NY, Department of Ecology and Evolution, State University of New York. http://life.bio.sunysb.edu/morph/ (accessed June 2008).Google Scholar
Santos, M., Cespedes, W., Balanya, J., Trotta, V., Calboli, F.C.F., Fontdevila, A. & Serra, L. (2006) Temperature-related genetic changes in laboratory populations of Drosophila subobscura: evidence against simple climatic-based explanations for latitudinal clines. American Naturalist 165, 258273.CrossRefGoogle Scholar
Shine, R. (1989) Ecological causes for the evolution of sexual dimorphism: a review of the evidence. The Quarterly Review of Biology 64(4), 419461.CrossRefGoogle ScholarPubMed
Sivinski, J.M. & Dodson, G. (1992) Sexual Dimorphism in Anastrepha suspense (Loew) and other Tephitid fruit flies (Diptera: Tephritidae): Possible rule of developmental rate, fecundity and dispersal. Journal of Insect Behavior 5(4), 491506.CrossRefGoogle Scholar
Smith, D.R. & Clevenger, R.R. (1986) Nosocomial nasal myiasis. Archives of Pathology and Laboratory Medicine 110, 439440.Google ScholarPubMed
Taylor, D.B., Szalanski, A.L. & Peterson, R.D. II (1996) A polymerase chain reaction – restriction fragment length polymorphism technique for identification of screwworms (Diptera: Calliphoridae). Medical and Veterinary Entomology 10, 6370.CrossRefGoogle Scholar
Torres, T.T., Lyra, M.L., Fresia, P. & Azeredo-Espin, A.M.L. (2007) Assessing Genetic Variation in the New World Screwworm, Cochliomyia hominivorax, populations from Uruguay. pp. 183191in Vreysen, M.J.B., Robinson, A.S. & Hendrichs, J. (Eds) Area-Wide Control of Insect Pests: From Research to Field Implementation. Dordrecht, The Netherlands, Springer.CrossRefGoogle Scholar
Villemant, C., Simbolotti, G. & Kenis, M. (2007) Discrimination of Eubazus (Hymenoptera, Braconidae) sibling species using geometric morphometrics analysis of wing venation. Systematic Entomology 32, 625634.CrossRefGoogle Scholar
Wyss, J.H. (2000) Screwworm Eradication in the Americas. Annals of the New York Academy of Science 791, 241247.CrossRefGoogle Scholar
Zelditch, M.L., Swiderski, D.L., Sheets, H.D. & Fink, W.L. (2004) Geometric Morphometrics for Biologists: A Primer. 443 pp. London, UK, Elsevier Academic Press.Google Scholar