Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T20:01:17.108Z Has data issue: false hasContentIssue false

Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) to detect DNA polymorphisms in aphids (Homoptera: Aphididae)

Published online by Cambridge University Press:  10 July 2009

William C. Black IV*
Affiliation:
Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
Nancy M. DuTeau
Affiliation:
Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
Gary J. Puterka*
Affiliation:
USDA-ARS, Plant Science Research Laboratory, 1301 N. Western, Stillwater, OK 74075, USA
James R. Nechols
Affiliation:
Department of Entomology, Kansas State University Manhattan, KS 66506, USA
Jennifer M. Pettorini
Affiliation:
Department of Entomology, Kansas State University Manhattan, KS 66506, USA
*
Dr William C. Black IV, Department of Environmental Health, Colorado State University, Fort Collins, Colorado 80525, USA.
USDA-ARS, Appalachian Fruit Research Station, 45 Wiltshire Road, Kearneysville, WV 25430, USA.

Abstract

We have used a new technique to identify discrete genetic markers in aphids, a family in which biochemical and morphological genetic polymorphisms are rare. The new technique uses the polymerase chain reaction (PCR) to amplify random regions of aphid genomes (random amplified polymorphic DNA) and has been termed RAPD-PCR. We demonstrate the use of the technique in revealing genetic variation in four aphid species, the greenbug (Schizaphis graminum (Rondani)), the Russian wheat aphid (Diuraphis noxia (Mordvilko)), the pea aphid (Acyrthosiphon pisum (Harris)), and the brown ambrosia aphid (Uroleucon ambrosiae (Thomas)). In contrast with allozyme surveys, RAPD-PCR revealed large amounts of genetic variation among individuals in each of these species. Variation was detected among biotypes, populations, colour morphs and even individuals on a single plant. We also explored the utility of RAPD-PCR in the detection and identification within aphid bodies of two endoparasitic wasps, Diaeretiella rapae (McIntosh) and Lysiphlebus testaceipes (Cresson). The use of RAPD-PCR in species diagnostics, parasitoid detection, and population studies is discussed.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abid, H.S., Kindler, S.D., Jensen, S.G., Thomas-Compton, M.A. & Spomer, S.M. (1989) Isozyme characterization of sorghum aphid species and greenbug biotypes (Homoptera: Aphididae). Annals of the Entomological Society of America 82, 303306.Google Scholar
Auclair, J.L. (1978) Biotypes of the pea aphid, Acyrthosiphon pisum, in relation to host plants and chemically defined diets. Entomologia Experimentalis et Applicata 24, 212216.CrossRefGoogle Scholar
Ballinger-Crabtree, M.E., Black, W.C. & Miller, B.R. (1992) Use of genetic polymorphisms detected by RAPD-PCR for differentiation and identification of Aedes aegyptisubspecies and populations. American Journal of Tropical Medicine and Hygiene (in press).Google Scholar
Beregovoy, V.H. & Starks, K. J. (1986) Enzyme patterns in biotypes of the greenbug, Schizaphis graminum (Rondani) (Homoptera: Aphididae). Journal of the Kansas Entomological Society 59, 517523.Google Scholar
Brookes, C.P. & Loxdale, H.D. (1987) Survey of enzyme variation in British populations of Myzus persicae (Sulzer) (Hemiptera: Aphididae) on crops and weed hosts. Bulletin of Entomological Research 77, 8389.Google Scholar
Cartier, J.J. (1959) Recognition of three biotypes of the pea aphid from southern Quebec. journal of Economic Entomology 52, 293294.Google Scholar
Carvalho, G.R., Maclean, N., Wratten, S.D., Carter, R.E. & Thurston, J.P. (1991) Differentiation of aphid clones using DNA fingerprints from individual aphids. Proceedings of the Royal Society of London B 243, 109114.Google Scholar
Harvey, T.L., Kofoid, K.D., Martin, T.J. & Sloderbeck, P.E. (1991) A new greenbug virulent to E-biotype resistant sorghum. Crop Science, 15, 16891691.CrossRefGoogle Scholar
Graur, D. (1985) Gene diversity in Hymenoptera. Evolution 39, 190199.CrossRefGoogle ScholarPubMed
Inayatullah, C, Webster, J.A. & Fargo, W.S. (1987) Morphometric variations in the alates of greenbug (Homoptera: Aphididae) biotypes. Annals of the Entomological Society of America 80, 306311.CrossRefGoogle Scholar
Jeffreys, A.J., Wilson, V. & Thein, S.L. (1985a) Hypervariable ‘minisatellite’ regions in human DNA. Nature, London 314, 6773.Google Scholar
Jeffreys, A.J., Wilson, V. & Thein, S.L. (1985b) Individual-specific ‘fingerprints’ of human DNA. Nature, London 316, 7679.CrossRefGoogle ScholarPubMed
Kambhampati, S., Black, W.C. & Rai, K.S. (1992) A RAPD-PCR based method for the identification and differentiation of mosquito species and populations: techniques and statistical analyses. Journal of Medical Entomology (in press).Google Scholar
Kawasaki, E.S. (1990) Sample preparation from blood, cells and other fluids. pp. 146152in Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds) PCR protocols: a guide to methods and applications. San Diego, California, Academic Press Inc.Google Scholar
Kiriac, I., Gruber, F., Poprawski, T., Halbert, S. & Elberson, L. (1990) Occurrence of sexual morphs of Russian wheat aphid, Diuraphis noxia (Homoptera: Aphididae), in several locations in the Soviet Union and the northwestern United States. Proceedings of the Entomological Society of Washington 92, 544547.Google Scholar
Loxdale, H.D. & Brookes, C.P. (1988) Electrophoretic study of enzymes from cereal aphid populations. V. Spatial and temporal genetic similarity of holocyclic populations of the bird-cherry oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), in Britain. Bulletin of Entomological Research 78, 241249.Google Scholar
Loxdale, H.D., Tarr, I.J., Weber, C.P., Brookes, C.P., Digby, P.G.N. & Castanera, P. (1985a) Electrophoretic study of enzymes from cereal aphid populations. III. Spatial and temporal genetic variation of populations of Sitobion avenae (F.) (Hemiptera: Aphididae). Bulletin of Entomological Research 75, 121141.Google Scholar
Loxdale, H.D., Rhodes, J.A. & Fox, J.S. (1985b) Electrophoretic study of enzymes from cereal aphid populations. IV. Detection of hidden genetic variation within populations of the grain aphid Sitobion avenae (F.) (Hemiptera: Aphididae). Theoretical and Applied Genetics 70, 407412.Google Scholar
Ma, R.Z., Black, W.C. & Reese, J.C. (1992) Genome size and organization in an aphid (Schizaphis graminum). Journal of Insect Physiology (in press).Google Scholar
May, B. & Holbrook, F.R. (1978) Absence of genetic variability in the green peach aphid, Myzus persicae (Hemiptera: Aphididae). Annals of the Entomological Society of America 71, 809812.CrossRefGoogle Scholar
Michels, G.J. Jr (1986) Graminaceous North American host plants of the greenbug with notes on biotypes. Southwestern Entomologist 11, 5566.Google Scholar
Morgan, P.B., Jones, C.J., Patterson, R.S. & Milne, D. (1988) Use of electrophoresis for monitoring purity of laboratory colonies of exotic parasitoids (Hymenoptera: Pteromalidae). Advances in Parasitic Hymenoptera Research 1988, 525531.Google Scholar
Mullis, K.B. & Faloona, F.A. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155, 335350.Google Scholar
Nevo, E., Beiles, A. & Ben-Shlomo, R. (1984) The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. pp. 13213in Mani, G.S. (Ed.) Evolutionary dynamics of genetic diversity. Berlin, Springer Verlag.CrossRefGoogle Scholar
Powers, T.O., Jensen, S.G., Kindler, S.D., Stryker, C.J. & Sandall, L.J. (1989) Mitochondrial DNA divergence among greenbug (Homoptera: Aphididae) biotypes. Annals of the Entomological Society of America 82, 298302.Google Scholar
Puterka, G.J. & Peters, D.C. (1988) Rapid technique for determining greenbug (Homoptera: Aphididae) biotypes B, C, E, and F. Journal of Economic Entomology 81, 396399.Google Scholar
Puterka, G.J. & Peters, D.C. (1990) Sexual reproduction and inheritance of virulence in the greenbug, Schizaphis graminum (Rondani). pp. 289318in Campbell, R.K. & Eikenbary, R.D. (Eds) Aphid-plant genotype interactions. New York, Elsevier Scientific Publications.Google Scholar
Puterka, G.J., Burd, J.D. & Burton, R.L. (1992) Biotypic variation in a worldwide collection of Russian wheat aphid (Homoptera: Aphididae). Journal of Economic Entomology (in press).Google Scholar
Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A. & Arnheim, N. (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 13501354.CrossRefGoogle ScholarPubMed
Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. & Erlich, H.A. (1988) Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487491.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory.Google Scholar
Shufran, K.A., Black, W.C. & Margolies, D.C. (1991) DNA fingerprinting to study spatial and temporal distributions of an aphid, Schizaphis graminum (Homoptera: Aphididae). Bulletin of Entomological Research 81, 303313.Google Scholar
Simon, J.P., Parent, M.A. & Auclair, J.L. (1982) Isozyme analysis of biotypes and field populations of the pea aphid, Acyrthosiphon pisum. Entomologia Experimentalis et Applicata 32, 186192.Google Scholar
Steiner, W.W.M., Voegtlin, D.J. & Irwin, M.E. (1985a) Genetic differentiation and its bearing on migration in North American populations of the corn leaf aphid, Rhopalosiphum maidis (Fitch) (Homoptera: Aphididae). Annals of the Entomological Society of America 78, 518525.Google Scholar
Steiner, W.W.M., Voegtlin, D.J., Irwin, M.E. & Kampmeier, G. (1985b) Electrophoretic comparison of aphid species: detecting differences based on taxonomic status and host plant. Journal of Comparative Biochemistry and Physiology B 81, 295299.CrossRefGoogle Scholar
Suomalainen, E., Saura, A., Lokki, J. & Teeri, T. (1980) Genetic polymorphism and evolution in parthenogenetic animals. IX. Absence of variation within parthenogenetic aphid clones. Theoretical and Applied Genetics 57, 129132.Google Scholar
Tomiuk, J. & Wohrmann, K. (1984) Genotypic variability in natural populations of Macrosiphum rosae (L.) in Europe. Biologisches Zentralblatt 103, 113122.Google Scholar
Walton, M.P., Powell, W., Loxdale, H.D. & Allen-Williams, L. (1990a) Electrophoresis as a tool for estimating levels of hymenopterous parasitism in field populations of the cereal aphid, Sitobion avenae. Entomologia Experimentalis et Applicata 54, 271279.Google Scholar
Walton, M.P., Loxdale, H.D. & Allen-Williams, L. (1990b) Electrophoretic ‘keys’ for the identification of parasitoids (Hymenoptera: Braconidae: Aphelinidae) attacking Sitobion avenae (Hemiptera: Aphididae). Biological journal of the Linnean Society 40, 333346.Google Scholar
Webster, F.M. & Phillips, W.J. (1912) The spring grain-aphid or ‘green bug’. Bureau of Entomology Bulletin No. 110, 153 pp.Google Scholar
Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. & Tingey, S.V. (1991) DNA polymorphisms amplified by arbitrary primers are useful genetic markers. Nucleic Acids Research 18, 65316535.Google Scholar
Wood, E.A. Jr., Chada, H.L. & Saxena, P.N. (1969) Reaction of small grains and grain sorghum to three greenbug biotypes. Oklahoma Agricultural Experiment Station Progress Report No. 618, 7 pp.Google Scholar
Wool, D., Bunting, S. & van Emden, H.F. (1978) Electrophoretic study of genetic variation in British Myzus persicae (Sulzer) (Hemiptera: Aphididae). Biochemical Genetics 16, 9871006.Google Scholar