Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T11:56:16.683Z Has data issue: false hasContentIssue false

Thermal tolerance and potential distribution of Carvalhotingis visenda (Hemiptera: Tingidae), a biological control agent for cat's claw creeper, Macfadyena unguis-cati (Bignoniaceae)

Published online by Cambridge University Press:  07 May 2009

K. Dhileepan*
Affiliation:
Queensland Department of Primary Industries & Fisheries, Alan Fletcher Research Station, Sherwood, Queensland 4075, Australia
D. Bayliss
Affiliation:
Queensland Department of Primary Industries & Fisheries, Alan Fletcher Research Station, Sherwood, Queensland 4075, Australia
M. Treviño
Affiliation:
Queensland Department of Primary Industries & Fisheries, Alan Fletcher Research Station, Sherwood, Queensland 4075, Australia
*
*Author for correspondence Fax: 61-7-33796815 E-mail: [email protected]

Abstract

The specialist tingid, Carvalhotingis visenda, is a biological control agent for cat's claw creeper, Macfadyena unguis-cati (Bignoniaceae). Cat's claw creeper is an invasive liana with a wide climatic tolerance, and for biological control to be effective the tingid must survive and develop over a range of temperatures. We evaluated the effect of constant temperatures (0–45°C) on the survival and development of C. visenda. Adults showed tolerance for wider temperature ranges (0–45°C), but oviposition, egg hatching and nymphal development were all affected by both high (>30°C) and low (<20°C) temperatures. Temperatures between 20°C and 30°C are the most favourable for adult survival, oviposition, egg hatching and nymphal development. The ability of adults and nymphs to survive for a few days at high (40°C and 45°C) and low (0°C and 5°C) temperatures suggest that extreme temperature events, which usually occur for short durations (hours) in cat's claw creeper infested regions in Queensland and New South Wales states are not likely to affect the tingid population. The potential number of generations (egg to adult) the tingid can complete in a year in Australia ranged from three to eight, with more generations in Queensland than in New South Wales.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baars, J.R. & Heystek, F. (2003) Geographical range and impact of five biocontrol agents established on Lantana camara in South Africa. BioControl 48, 743759.CrossRefGoogle Scholar
Braman, S.K. & Pendley, A.F. (1993) Temperature, photoperiod and aggregation effects on development, diapause, reproduction and survival of Corythucha cydoniae (Heteroptera: Tingidae). Journal of Entomological Science 28, 417426.CrossRefGoogle Scholar
Bryant, S.R., Thomas, C.D. & Bale, J.S. (2000) Thermal ecology of gregarious and solitary nettle-feeding nymphalid butterfly larvae. Oecologica 122, 110.CrossRefGoogle ScholarPubMed
Byrne, M.J., Coetzee, J., McConnachie, A.J., Parasram, W. & Hill, M.P. (2004) Predicting climate compatibility of biological control agents in their region of introduction. pp. 2834 in Cullen, H.M., Briese, D.T., Kriticos, D.J., Lonsdale, W.M., Morin, L. & Scott, J.J. (Eds) Proceedings of the XI International Symposium on Biological Control of Weeds. CSIRO Entomology, 27 April–2 May 2003, Canberra, Australia.Google Scholar
Cividanes, F.J., Julio, F.S. & Galli, J.C. (2004) Biology of Leptopharsa heveae Drake & Poor (Heteroptera: Tingidae) and the relationship of its thermal requirements with population fluctuation in rubber tree. Neotropical Entomology 33, 685691.CrossRefGoogle Scholar
Coetzee, J.A., Byrne, M.J. & Hill, M.P. (2007) Predicting the distribution of Eccritotarsus catarinensis, a natural enemy released on water hyacinth in South Africa. Entomologia Experimentalis et Applicata 125, 237247.CrossRefGoogle Scholar
Crozier, L.G. (2004). Field transplants reveal summer constraints on a butterfly range expansion. Oecologica 141, 148157.CrossRefGoogle ScholarPubMed
Danks, H.V. (2002) Modifications of adverse conditions by insects. Oikos 99, 1024.CrossRefGoogle Scholar
Dhileepan, K., Trevino, M. & Raghu, S. (2005) Effect of temperature on the survival of Aconophora compressa (Hemiptera: Membracidae): Implications for weed biocontrol. Australian Journal of Entomology 44, 457462.CrossRefGoogle Scholar
Dhileepan, K., Treviño, M. & Snow, E.L. (2007a) Specificity of Carvalhotingis visenda (Hemiptera: Tingidae) as a biological control agent for cat's claw creeper Macfadyena unguis-cati (Bignoniaceae) in Australia. Biological Control 41, 282290.CrossRefGoogle Scholar
Dhileepan, K., Snow, E.L., Rafter, M.A., Treviño, M., McCarthy, J. & Wilmot Senaratne, K.A.D. (2007b) The leaf-tying moth Hypocosmia pyrochroma (Lepidoptera: Pyralidae), a host specific biological control agent for cat's claw creeper Macfadyena unguis-cati (Bignoniaceae) in Australia. Journal of Applied Entomology 131, 564568.CrossRefGoogle Scholar
Diaz, R., Overhold, W.A., Samayoa, A., Sosa, F., Cordeau, D. & Medal, J. (2008) Temperature-dependent development, cold tolerance and potential distribution of Gratiana boliviana (Coleoptera: Chrysomelidae), a biological control agent of tropical soda apple, Solanum viarum (Solanaceae). Biocontrol Science and Technology 18, 193207.CrossRefGoogle Scholar
Drake, C.J. & Ruhoff, F.A. (1965) Lacebugs of the world: A catalog (Hemiptera: Tingidae). Bulletin 243, Smithsonian Institution, United States National Museum, pp. 634, Washington, DC, USA.Google Scholar
Everett, T.H. (1980) The New York Botanical Garden illustrated Encyclopaedia of Horticulture. Vol. 6. 2130 pp. New York & London, Garland Publishing Inc.Google Scholar
Gang, M. & Chunsen, M. (2007) Behavioural responses of bird cherry-oat aphid, Rhopalosiphum padi, to temperature gradients (abstract). Acta Phytophylacica Sinica 34, 624630.Google Scholar
Henderson, R.J.F. (1997) Queensland Plants: Names and Distribution. 284 pp. Brisbane, Australia, Queensland Herbarium.Google Scholar
Holm, L.G., Pancho, J.V., Herberger, J.P. & Plucknett, D.L. (1991) A Geographical Atlas of World Weeds. 391 pp. Malabar, Florida, USA, Krieger Publishing Company.Google Scholar
Howard, R.A. (1989) Flora of the Lesser Antilles: Leeward and Windward Islands. Dicotyledoneae. Vol. 6. 658 pp. Jamaica Plain, MA, USA, Arnold Arboretum, Harvard University.Google Scholar
Kriticos, D.J., Sutherst, R.W., Brown, J.R., Adkins, S.W. & Maywald, G.F. (2003) Climate change and biotic invasions: A case history of a tropical woody vine. Biological Invasions 5, 147165.CrossRefGoogle Scholar
Lale, N.E.S. & Vidal, S. (2000) Mortality of different developmental stages of Callosobruchus maculatus F. and Callosobruchus subinnotatus Pic. (Coleoptera: Bruchidae) in bambara groundnut Vigna subterranea (L.) Verdc. seeds exposed to simulated solar heat. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 107, 553559.Google Scholar
Larentzaki, E., Powell, G. & Copland, M.J.W. (2007) Effect of temperature on development, overwintering and establishment potential of Franklinothrips vespiformis in the UK. Entomologia Experimentalis et Applicata 124, 143151.CrossRefGoogle Scholar
McClay, A.S. & Hughes, R.B. (2007) Temperature and host-plant effects on development and population growth of Mecinus janthinus (Coleoptera: Curculionidae), a biological control agent for invasive Linaria spp. Biological Control 40, 405410.CrossRefGoogle Scholar
Meyer, J.Y. (2000) Preliminary review of the invasive plants in the Pacific islands (SPREP Member countries). pp. 85–114 in Sherley, G. (Ed.) Invasive Species in the Pacific: A Technical Review and Draft Regional Strategy. Samoa, South Pacific Regional Environment Programme.Google Scholar
Montemayor, S. & Coscarón, M.D.C. (2005) List of Argentinean Tingidae Laporte (Heteroptera) with their host plants. Zootaxa 1065, 2950.CrossRefGoogle Scholar
Rafter, M.A., Wilson, A.J., Wilmot Senaratne, K.A.D. & Dhileepan, K. (2008) Climatic-requirements models of cat's claw creeper Macfadyena unguis-cati (Bignoniaceae) to prioritise areas for exploration and release of biological control agents. Biological Control 44, 169179.CrossRefGoogle Scholar
Romero, M.L., Ravelo, G.H. & Rodriguez, H.V. (2000) Biologia de Pseudacysta perseae (Heid.) (Heteroptera: Tingidae) a temperatura constante (Spanish). Centro Agricola 27, 3941.Google Scholar
Simelane, D.O. (2007) Influence of temperature, photoperiod and humidity on oviposition and egg hatch of the root-feeding flea beetle Longitargus bethae (Chrysomelidae: Alticinae), a natural enemy of the weed Lantana camara (Verbenaceae). Bulletin of Entomological Research 97, 111116.CrossRefGoogle ScholarPubMed
Sparks, H.E. (1999) The initiation of a biological control programme against Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) in South Africa. African Entomology Memoir No. 1, 153157.Google Scholar
Treviño, M., Snow, E.L., Seneratne, W., Conrad, C. & Dhileepan, K. (2006) Leaf-sucking tingid (Carvalhotingis visenda): A potential biological control agent for cat's claw creeper (Macfadyena unguis-cati). pp. 605606 in Preston, C., Watts, J.H. and Crossman, N.D. (Eds) Proceedings of the Fifteenth Australian Weeds Conference. Weed Management Society of South Australia, Adelaide, SA, Australia.Google Scholar
Trudgill, D.L., Honek, A., Li, D. & Van Straalen, N.M. (2005) Thermal time – concepts and utility. Annals of Applied Biology 146, 114.CrossRefGoogle Scholar
Williams, H., Neser, S. & Madire, L.G. (2008) Candidates for biocontrol of Macfadyena unguis-cati in South Africa: Biology, host-ranges and potential impact of Carvalhotingis visenda and Carvalhotingis hollandi under quarantine conditions. BioControl 53, 945956.CrossRefGoogle Scholar