Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Godfray, H. C. J.
Knapp, S.
Gaston, Kevin J.
and
O'Neill, Mark A.
2004.
Automated species identification: why not?.
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,
Vol. 359,
Issue. 1444,
p.
655.
Li, Zhenyu
Zhou, Zuji
Shen, Zuorui
and
Yao, Qing
2005.
Artificial Intelligence Applications and Innovations.
Vol. 187,
Issue. ,
p.
483.
Barrett, Rowan D.H
and
Hebert, Paul D.N
2005.
Identifying spiders through DNA barcodes.
Canadian Journal of Zoology,
Vol. 83,
Issue. 3,
p.
481.
Vaňhara, Jaromír
Muráriková, Natália
Malenovský, Igor
and
Havel, Josef
2007.
Artificial neural networks for fly identification: A case study from the genera Tachina and Ectophasia (Diptera, Tachinidae).
Biologia,
Vol. 62,
Issue. 4,
p.
462.
Larios, N.
Deng, H.
Zhang, W.
Sarpola, M.
Yuen, J.
Paasch, R.
Moldenke, A.
Lytle, D. A.
Correa, Ruiz
Mortensen, E.
Shapiro, L. G.
and
Dietterich, T. G.
2007.
Automated Insect Identification through Concatenated Histograms of Local Appearance Features.
p.
26.
Larios, Natalia
Deng, Hongli
Zhang, Wei
Sarpola, Matt
Yuen, Jenny
Paasch, Robert
Moldenke, Andrew
Lytle, David A.
Correa, Salvador Ruiz
Mortensen, Eric N.
Shapiro, Linda G.
and
Dietterich, Thomas G.
2008.
Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects.
Machine Vision and Applications,
Vol. 19,
Issue. 2,
p.
105.
Fedor, P.
Malenovský, I.
Vaňhara, J.
Sierka, W.
and
Havel, J.
2008.
Thrips (Thysanoptera) identification using artificial neural networks.
Bulletin of Entomological Research,
Vol. 98,
Issue. 5,
p.
437.
Abadie, Jean-Claude
Andrade, Camila
Machon, Nathalie
and
Porcher, Emmanuelle
2008.
On the use of parataxonomy in biodiversity monitoring: a case study on wild flora.
Biodiversity and Conservation,
Vol. 17,
Issue. 14,
p.
3485.
Dujardin, Jean-Pierre
2008.
Morphometrics applied to medical entomology.
Infection, Genetics and Evolution,
Vol. 8,
Issue. 6,
p.
875.
Acevedo, Miguel A.
Corrada-Bravo, Carlos J.
Corrada-Bravo, Héctor
Villanueva-Rivera, Luis J.
and
Aide, T. Mitchell
2009.
Automated classification of bird and amphibian calls using machine learning: A comparison of methods.
Ecological Informatics,
Vol. 4,
Issue. 4,
p.
206.
Messina, Giuseppe
Pandolfi, Camilla
Mugnai, Sergio
Azzarello, Elisa
Dixon, Kingsley
and
Mancuso, Stefano
2009.
Phyllometric parameters and artificial neural networks for the identification of Banksia accessions.
Australian Systematic Botany,
Vol. 22,
Issue. 1,
p.
31.
Kiranyaz, Serkan
Gabbouj, Moncef
Pulkkinen, Jenni
Ince, Turker
and
Meissner, Kristian
2010.
Network of evolutionary binary classifiers for classification and retrieval in macroinvertebrate databases.
p.
2257.
Lytle, David A.
Martínez-Muñoz, Gonzalo
Zhang, Wei
Larios, Natalia
Shapiro, Linda
Paasch, Robert
Moldenke, Andrew
Mortensen, Eric N.
Todorovic, Sinisa
and
Dietterich, Thomas G.
2010.
Automated processing and identification of benthic invertebrate samples.
Journal of the North American Benthological Society,
Vol. 29,
Issue. 3,
p.
867.
Muráriková, N.
Vaňhara, J.
Tóthová, A.
and
Havel, J.
2011.
Polyphasic approach applying artificial neural networks, molecular analysis and postabdomen morphology to West PalaearcticTachinaspp. (Diptera, Tachinidae).
Bulletin of Entomological Research,
Vol. 101,
Issue. 2,
p.
165.
Kindalov, Marjan
Bogdanova, Ana Madevska
and
Erakovic, Zarko
2012.
A novel algorithm for an image processing system in entomology.
p.
1.
Wang, Jiangning
Ji, Liqiang
Liang, Aiping
and
Yuan, Decheng
2012.
The identification of butterfly families using content-based image retrieval.
Biosystems Engineering,
Vol. 111,
Issue. 1,
p.
24.
Wang, Jiangning
Lin, Congtian
Ji, Liqiang
and
Liang, Aiping
2012.
A new automatic identification system of insect images at the order level.
Knowledge-Based Systems,
Vol. 33,
Issue. ,
p.
102.
Yaakob, Shahrul Nizam
and
Jain, Lakhmi
2012.
An insect classification analysis based on shape features using quality threshold ARTMAP and moment invariant.
Applied Intelligence,
Vol. 37,
Issue. 1,
p.
12.
Han, Ruizhen
He, Yong
and
Liu, Fei
2012.
Feasibility Study on a Portable Field Pest Classification System Design Based on DSP and 3G Wireless Communication Technology.
Sensors,
Vol. 12,
Issue. 3,
p.
3118.
Anderson, James T.
Zilli, Florencia L.
Montalto, Luciana
Marchese, Mercedes R.
McKinney, Matthew
and
Park, Yong-Lak
2013.
Wetland Techniques.
p.
143.