Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:04:56.008Z Has data issue: false hasContentIssue false

Silicon-mediated and constitutive resistance to Rhopalosiphum maidis (Hemiptera: Aphididae) in corn hybrids

Published online by Cambridge University Press:  19 July 2018

C.A. Boer*
Affiliation:
Federal University of Uberlândia, Agricultural Sciences Institute, Uberlândia – Minas Gerais, Brazil
M.V. Sampaio
Affiliation:
Federal University of Uberlândia, Agricultural Sciences Institute, Uberlândia – Minas Gerais, Brazil
H.S. Pereira
Affiliation:
Federal University of Uberlândia, Agricultural Sciences Institute, Uberlândia – Minas Gerais, Brazil
*
*Author for correspondence Phone: +55 34 3238-2566 E-mail: [email protected]; [email protected]

Abstract

The corn leaf aphid, Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae), is an important pest of corn, but no corn genotypes resistant to R. maidis are commercially available. Although the ability of silicon to induce plant resistance against some insects is known, the effect of silicon on R. maidis and in corn hybrids with different levels of constitutive resistance is still unknown. This study sought to determine the constitutive resistance of corn hybrids to R. maidis and silicon resistance induction in hybrids with different degrees of constitutive resistance. Field experiments with natural infestations of aphids were conducted in three locations in Brazil (Patos de Minas, Araguari, and Tupaciguara). Greenhouse trials were also used to evaluate the effect of varietal resistance on aphid population growth and identify resistant and susceptible genotypes. Aphid resistance induced by silicon was determined with resistant and susceptible corn hybrids. In the field, the corn hybrids BM8850, AS1625PRO, and DKB310PRO had the greatest proportion of plants infested by R. maidis in all three localities. The hybrids P30F53H, STATUS VIP, BM9288, DAS2B587HX, DKB175PRO, AS1633PRO, and DKB390PRO2 were the least infested in Patos de Minas and Araguari, and P30F53H was the least infested in Tupaciguara. When antibiosis effects were evaluated by aphid population growth, the hybrids AG7088PRO3 and DKB310PRO2 were susceptible, while P30F53YH was resistant. When natural aphid infestation was evaluated, wherein the effects of antibiosis and non-preference could not be discriminated, soil applications of silicon-induced resistance to R. maidis in both susceptible and constitutively resistant corn hybrids.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, S., Veyrat, N., Gordon-Weeks, R., Zhang, Y.H., Martin, J., Smart, L., Glauser, G., Erb, M., Flors, V., Frey, M. & Ton, J. (2011) Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiology 157, 317327.Google Scholar
Almeida, A.C.L., Silva, L.P., Jesus, F.G., Nogueira, L., Souza Neto, M. & Cunha, P.C.R. (2015) Efeito de indutores de resistência em híbridos de milho na atratividade do pulgão Rhopalosiphum maidis (Fitch, 1856) (Hemiptera: Aphididae). Revista Agrarian 8(27), 2329.Google Scholar
Alvarenga, R., Moraes, J.C., Auad, A.M., Coelho, M. & Nascimento, A.M. (2017) Induction of resistance of corn plants to Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) by application of silicon and gibberellic acid. Bulletin of Entomological Research 107, 527533.Google Scholar
Balasta, M.L.F.C., Perez, C.M., Juliano, B.O., Villareal, C.P., Lott, J.N.A. & Roxas, D.B. (1989) Effects of silica level on some properties of Oryza sativa straw and hull. Canadian Journal of Botany 67, 23562363.Google Scholar
Barbosa Filho, M.P., Snyder, G.H., Prabhu, A.S., Datnoff, L.E. & Korndörfer, G.H. (2000) Importância do silício para a cultura do arroz (uma revisão de literatura). Informações Agronômicas 89, 18.Google Scholar
Basagli, M.A.B., Moraes, J.C., Carvalho, G.A., Ecole, C.C. & Gonçalves-Gervásio, R.C.R. (2003) Effect of sodium silicate application on the resistance of wheat plants to green-aphids Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotropical Entomology 32, 659663.Google Scholar
Betsiashvili, M., Ahern, K.R. & Jander, G. (2015) Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. Journal of Experimental Botany 66, 571578.Google Scholar
Blackman, R.L. (1990) Specificity in aphid/plant genetic interactions, with particular attention to the role of the alate colonizer. pp. 251274 in Campbell, R.K. & Eikienbary, R.D. (Eds) Aphid-Plant Genotype Interactions. Amsterdam, Elsevier.Google Scholar
Blackman, R.L. & Eastop, V.P. (2000) Aphids on the World's crops: An Identification and Information Guide. 2nd edn. Chichester, J. Wiley & Sons.Google Scholar
Boquel, S., Giordanengo, P. & Ameline, A. (2011) Probing behavior of apterous and alate morphs of two potato-colonizing aphids. Journal of Insect Science 11, 110.Google Scholar
Bruce, T.J.A. (2015) Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. Journal of Experimental Botany 66, 455465.Google Scholar
Carena, M.J. & Glogoza, P. (2004) Resistance of maize to the corn leaf aphid: a review. Maydica 49, 241254.Google Scholar
Carvalho, S.P., Moraes, J.C. & Carvalho, J.G. (1999) Efeito do silício na resistência do sorgo (Sorghum bicolor) ao pulgão-verde Schizaphis graminum (Rond.) (Homoptera: Aphididae). Anais da Sociedade Entomológica do Brasil 28, 505510.Google Scholar
Chérif, M., Asselin, A. & Belanger, R.R. (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84, 236242.Google Scholar
Cortés-Cruz, M., Snook, M. & McMullen, M.D. (2003) The genetic basis of C-glycosyl flavone B-ring modification in maize (Zea mays L.) silks. Genome 46, 182194.Google Scholar
Costa, R.R., Moraes, J.C. & Antunes, C.S. (2007) Resistência induzida em trigo ao pulgão Schizaphis graminum (hemiptera: aphididae) por silício e acibenzolar-s-methyl. Ciência e Agrotecnologia 31, 393397.Google Scholar
Dayanandam, P., Kaufman, P.B. & Frakin, C.I. (1983) Detection of silica in plants. American Journal of Botany 70, 10791084.Google Scholar
Deren, C.W. (2001) Plant genotype, silicon concentration, and silicon-related responses. pp. 149158 in Datnoff, L.E., Snyder, G.H. & Korndörfer, G.H. (Ed.) Silicon in Agriculture. Amsterdam, Elsevier Science.Google Scholar
Dias, P.A.S., Sampaio, M.V., Rodrigues, M.P., Korndörfer, A.P., Oliveira, R.S., Ferreira, S.E. & Korndörfer, G.H. (2014) Induction of resistance by silicon in wheat plants to alate and apterous morphs of Sitobion avenae (Hemiptera: Aphididae). Environmental Entomology 43, 949956.Google Scholar
Epstein, E. (1994) The anomaly of silicon in plant biology. Proceedings of the National of Academy Science 91, 1117.Google Scholar
Epstein, E. (1999) Silicon. Anual Review of Plant Physiology and Plant Molecular Biology 50, 641664.Google Scholar
Faria, C.A., Wäckers, F.L., Pritchard, J., Barrett, D.A. & Turlings, T.C.J. (2007) High susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteran pests. PLoS ONE 2(7), e600.Google Scholar
Fawer, A., Abou-Zaid, M., Menzies, J.G. & Bélanger, R.R. (1998) Silicon mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88, 396401.Google Scholar
Frey, M., Schullehner, K., Dick, R., Fiesselmann, A. & Gierl, A. (2009) Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70, 16451651.Google Scholar
Gomes, F.B., Moraes, J.C., Santos, C.D. & Goussain, M.M. (2005) Resistance induction in wheat plants by silicon and aphids. Scientia Agricola 62, 547551.Google Scholar
Gomes, F.B., Moraes, J.C., Santos, C.D. & Antunes, C.S. (2008) Uso de silício como indutor de resistência em Batata a Myzus persicae (Sulzer) (Hemiptera: Aphididae). Neotropical Entomology 37(2), 185190.Google Scholar
Guntzer, F., Keller, C. & Meunier, J.D. (2012) Benefits of plant silicon for crops: a review. Agronomy Sustainable Development 32, 201213.Google Scholar
Han, Y., Li, P., Gong, S., Yang, L., Wen, L. & Hou, M. (2016) Defense responses in rice induced by silicon amendment against infestation by the leaf folder Cnaphalocrocis medinalis. PLoS ONE 11, e0153918.Google Scholar
Hartley, S.E. & DeGabriel, J.L. (2016) The ecology of herbivore-induced silicon defenses in grasses. Functional Ecology 30, 13111322.Google Scholar
Heidel-Fischer, H., Vogel, H. & Musser, R.O. (2014) Plant transcriptomic responses to herbivory. Annual Plant Reviews 47, 155196.Google Scholar
Hodson, M.J., White, P.J., Mead, A. & Broadley, M.R. (2005) Phylogenetic variation in the silicon composition of plants. Annals of Botany 96, 10271046.Google Scholar
Jeer, M., Telugu, U.M., Voleti, S.R. & Padmakumari, A.P. (2017) Soil application of silicon reduces yellow stem borer, Scirpophaga incertulas (Walker) damage in rice. Journal of Applied Entomology 141, 189201.Google Scholar
Jonczyk, R., Schmidt, H., Osterrieder, A., Fiesselmann, A., Schullehner, K., Haslbeck, M., Sicker, D., Hofmann, D., Yalpani, N & Simmons, C. (2008) Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: characterization of Bx6 and Bx7. Plant Physiology 146, 10531063.Google Scholar
Keeping, M.G. & Reynolds, O.L. (2009) Silicon in agriculture: new insights, new significance and growing application. Annals of Applied Biology 155, 153154.Google Scholar
Korndörfer, G.H. (2015) Uso do Silício na Agricultura. Uberlândia, ICIAG. Available online at http://www.dpv24.iciag.ufu.br/silicio/efeitos/efeitos.htm.Google Scholar
Korndörfer, G.H., Coelho, N.M., Snyder, G.H. & Mizutani, C.T. (1999) Avaliação de métodos de extração de silício para solos cultivados com arroz de sequeiro. Revista Brasileira de Ciência do Solo 23, 101106.Google Scholar
Korndörfer, A.P., Grisoto, E. & Vendramim, J.D. (2011) Induction of insect plant resistance to the spittlebug Mahanarva fimbriolata Stål (Hemiptera: Cercopidae) in sugarcane by silicon application. Neotropical Entomology 40, 387392.Google Scholar
Liang, Y., Nikolic, M., Bélanger, R., Gong, H. & Song, A. (2015) Silicon and insect pest resistance. pp. 197207 in Liang, Y., Nikolic, M., Bélanger, R., Gong, H. & Song, A. (Eds) Silicon in Agriculture. Dordrecht, Springer.Google Scholar
Lux, A., Luxova, M., Hattori, T., Inanaga, S. & Sugimoto, Y. (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiologic Plantarum 115, 8792.Google Scholar
Ma, J.F. & Takahashi, E. (2002) Soil, Fertilizer, and Plant Silicon Research in Japan. [S.I.], 274p., Amsterdam, Elsevier.Google Scholar
Meihls, L., Handrick, V., Glauser, G., Barbier, H., Kaur, H., Haribal, M.M., Lipka, A., Gershenzon, J., Erb, E.S.B.M., Kollner, T.G. & Jander, G. (2013) Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. The Plant Cell 25, 23412355.Google Scholar
Mello, N.O., Negri, B.F. & Souza, I.R.P. (2015) Detecção molecular de Potyvirus causador do mosaico comum do milho em plantas daninhas da família Poaceae. Revista Brasileira de Ciências da Vida 3(2), 3 pp.Google Scholar
Mitani, N. & Ma, J.F. (2005) Uptake system of silicon in different plant species. Journal of Experimental Botany 56, 12551261.Google Scholar
Moraes, J.C., Goussain, M.M., Basagli, M.A.B., Carvalho, G.A., Carvalho, E. & Sampaio, M.V. (2004) Silicon influence on the tritrophic interaction: wheat plants, the greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and its natural enemies, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Neotropical Entomology 33, 619624.Google Scholar
Moraes, J.C., Goussain, M.M., Carvalho, G.A. & Costa, R.R. (2005) Feeding non-preference of the corn leaf aphid Rhopalosiphum maidis (Fitch, 1856) (Hemiptera: Aphididae) to corn plants (Zea mays L.) treated with silicon. Ciência e Agrotecnologia 29, 761766.Google Scholar
Niemeyer, H.M. (2009) Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. Journal of Agricultural and Food Chemistry 57, 16771696.Google Scholar
Poehling, H.-M., Freier, B. & Klüken, A.M. (2007) IPM case studies: grain. pp. 597611 in van Emden, H.F. & Harrington, R. (Eds) Aphids as Crop Pests. Trowbridge, Cromwell Press.Google Scholar
Razmjou, J. & Golizadeh, A. (2010) Performance of corn leaf aphid, Rhopalosiphum maidis (Fitch) (Homoptera: Aphididae) on selected maize hybrids under laboratory conditions. Applied Entomology and Zoology 45, 267274.Google Scholar
Ren, S.P., Yang, F., Gao, M.Q., Pu, D.Q., Shi, M., Ye, G.Y., Shen, Z.C. & Chen, X.X. (2016) Effects of transgenic Bt rice on nontarget Rhopalosiphum maidis (Homoptera: Aphididae). Environmental Entomology 45, 10901096.Google Scholar
Reynolds, O.L., Keeping, M.G. & Meyer, J.H. (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Annals of Applied Biology 155, 171186.Google Scholar
Reynolds, O.L., Padula, M.P., Zeng, R. & Gurr, G.M. (2016) Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Frontiers in Plant Science 7, 744.Google Scholar
Ribeiro, A.C., Guimarães, P.T.G. & Alvarez, V.H. (1999) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais – 5ª Aproximação. 359p. Viçosa, Comissão de Fertilidade do Solo do Estado de Minas Gerais.Google Scholar
Smith, C.M. & Clement, S.L. (2012) Molecular bases of plant resistance to arthropods. Annual Review of Entomology 57, 309328.Google Scholar
Thaler, J.S., Humphrey, P.T. & Whiteman, N.K. (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science 17, 260270.Google Scholar
War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S. & Sharma, H.C. (2012) Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7(10), 13061320.Google Scholar
Yang, L., Han, Y., Li, P., Li, F., Ali, S. & Hou, M. (2017) Silicon amendment is involved in the induction of plant defense responses to a phloem feeder. Scientific Reports 7, 4232.Google Scholar