Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T06:24:57.097Z Has data issue: true hasContentIssue false

Selection by mating competitiveness improves the performance of Anastrepha ludens males of the genetic sexing strain Tapachula-7

Published online by Cambridge University Press:  24 May 2016

L. Quintero-Fong*
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, 30700 Tapachula, Chiapas, México Programa Moscafrut, Camino a los Cacahotales S/N. CP., 30860, Metapa de Domínguez, Chiapas, México
J. Toledo
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, 30700 Tapachula, Chiapas, México
L. Ruiz
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, 30700 Tapachula, Chiapas, México
P. Rendón
Affiliation:
International Atomic Energy Agency (IAEA), Technical Cooperation-Latin-America, Guatemala City, Zona 10, Guatemala
D. Orozco-Dávila
Affiliation:
Programa Moscafrut, Camino a los Cacahotales S/N. CP., 30860, Metapa de Domínguez, Chiapas, México
L. Cruz
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, 30700 Tapachula, Chiapas, México
P. Liedo
Affiliation:
El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, 30700 Tapachula, Chiapas, México
*
*Author for correspondence Phone: +52 (962) 628 9800, ext 5471 Fax: +52 (962) 628 9806 E-mail: [email protected]

Abstract

The sexual performance of Anastrepha ludens males of the Tapachula-7 genetic sexing strain, produced via selection based on mating success, was compared with that of males produced without selection in competition with wild males. Mating competition, development time, survival, mass-rearing quality parameters and pheromone production were compared. The results showed that selection based on mating competitiveness significantly improved the sexual performance of offspring. Development time, survival of larvae, pupae and adults, and weights of larvae and pupae increased with each selection cycle. Differences in the relative quantity of the pheromone compounds (Z)-3-nonenol and anastrephin were observed when comparing the parental males with the F4 and wild males. The implications of this colony management method on the sterile insect technique are discussed.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aluja, M., Piñero, J., Jácome, I., Diaz-Fleischer, F. & Sivinski, J. (2000) Behavior of flies in the genus Anastrepha (Trypetinae: Toxotrypanini). pp. 375406 in Aluja, M. & Norrbom, A.L. (Eds) Fruit Flies (Diptera: Tephritidae): Phylogeny and Evolution of Behavior. Boca Raton, FL, USA, CRC Press.Google Scholar
Aspi, J. (2000) Inbreeding and outbreeding depression in male courtship song characters in Drosophila montana . Heredity 84, 273282.CrossRefGoogle ScholarPubMed
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015) lme4: Linear mixed-effects models using Eigen and S4_. R package version 1.1-9, Available online at: https://CRAN.R-project.org/package=lme4.Google Scholar
Battiste, M.A., Strekowski, L., Vanderbilt, D.P., Visnick, M., King, R.W. & Nation, J.L. (1983) Anastrephin and epianastrephin, novel lactone components isolated from the sex pheromone blend of male caribbean and mexican fruit flies. Tetrahedron Letters 24, 26112614.Google Scholar
Boller, E. (1972) Behavioral aspects of mass-rearing of insects. Entomophaga 17, 925.CrossRefGoogle Scholar
Bosa, C.F., Cruz-López, L., Zepeda-Cisneros, C.S., Valle-Mora, J., Guillén-Navarro, K. & Liedo, P. (2016) Sexual behaviour and male volatile compounds in wild and mass-reared strains of the Mexican fruit fly Anastrepha ludens (Diptera: Tephritidae) held under different colony management regimes. Insect Science 27, 105116.CrossRefGoogle Scholar
Bubli, O.A., Imasheva, A.G. & Loeschcke, V. (1998) Selection for knockdown resistance to heat in Drosophila melanogaster at high and low larval densities. Evolution 52, 619625.CrossRefGoogle ScholarPubMed
Burk, T. & Webb, J.C. (1983) Effect of male size on calling propensity, song parameters, and mating success in caribbean fruit flies, Anastrepha suspensa (Loew) (Diptera: Tephritidae). Annals of the Entomological Society of America 76, 678682.CrossRefGoogle Scholar
Calkins, C.O. & Parker, A.G. (2005) Sterile insect quality. pp. 269296 in Dyck, V.A., Hendrichs, J. & Robinson, A.S. (Eds) Sterile Insect Technique: Principles and Practice in Area-wide Integrated Pest Management. Dordrecht, The Netherlands, Springer.CrossRefGoogle Scholar
Calkins, C.O. & Webb, J.C. (1983) A cage and support framework for behavioral tests of fruit flies in the field. Florida Entomologist 66, 512514.Google Scholar
Churchill-Stanland, C., Stanland, R., Wong, T.T.Y., Tanaka, N., McInnis, D.O. & Dowell, R.V. (1986) Size as a factor in the mating propensity of Mediterranean fruit flies, Ceratitis capitata (Diptera: Tephritidae), in the laboratory. Journal of Economic Entomology 79, 614619.CrossRefGoogle Scholar
De Aquino, J.C. & Joachim-Bravo, I.S. (2014) Relevance of male size to female mate choice in Ceratitis capitata (Diptera: Tephritidae): investigations with wild and laboratory-reared Flies. Journal of Insect Behavior 27, 162176.CrossRefGoogle Scholar
Domínguez, J., Trinidad, A., Solís, E. & Hernández, E. (2010) Métodos de Colonización y Cría Masiva. pp. 259276 in Montoya, P., Toledo, J. & Hernández, E. (Eds) Moscas de la Fruta: Fundamentos y Procedimientos para su Manejo. México, D. F., S y G.Google Scholar
Dyck, V.A., Hendrichs, J. & Robinson, A.S. (2005) Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. Dordrecht, The Netherlands, Springer.CrossRefGoogle Scholar
Falconer, D.S. (1989) Introduction to Quantitative Genetics. 3rd edn. London, Longman Scientic & Technical.Google Scholar
FAO/IAEA/USDA (2014) Product Quality Control for Sterile Mass-reared and Released Tephritid Fruit Flies. Version 6.0. Vienna, Austria, International Atomic Energy Agency.Google Scholar
Fisher, K. & Cáceres, C. (2000) A filter rearing system for mass reared genetic sexing strains of Mediterranean fruit fly (Diptera: Tephritidae). pp. 543550 in Tan, K.H. (Ed.) Areawide Control of Fruit Flies and Other Insect Pests. Penang, Malaysia, Penerbit Universiti Sains Malaysia.Google Scholar
Fox, J. & Weisberg, S. (2011) An {R} Companion to Applied Regression. 2nd edn. Thousand Oaks, CA: Sage. Available online at: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.Google Scholar
Franz, G. (2005) Genetic sexing strains in Mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. pp. 427451 in Dyck, V.A., Hendrichs, J. & Robinson, A.S. (Eds) Sterile Insect Technique: Principles and Practice in Area-wide Integrated Pest Management. Dordrecht, The Netherlands, Springer.Google Scholar
Fuller, R.C., Baer, C.F. & Travis, J. (2005) How and when selection experiments might actually be useful. Integrative and Comparative Biology 45, 391404.CrossRefGoogle ScholarPubMed
Futuyma, D.J. (2009) Evolution. pp. 633. Sunderland, MA, Sinauer Associates.Google Scholar
Hillesheim, E. & Stearns, S.C. (1991) The responses of Drosophila melanogaster to artificial selection on body weight and its phenotypic plasticity in two larval food environments. Evolution 45, 19091923.Google Scholar
Hillesheim, E. & Stearns, S.C. (1992) Correlated responses in life-history traits to artificial selection for body weight in Drosophila melanogaster . Evolution 46, 745752.CrossRefGoogle ScholarPubMed
Hudak, M.J. & Gromko, M.H. (1989) Response to selection for early and late development of sexual maturity in Drosophila melanogaster . Animal Behaviour 38, 344351.CrossRefGoogle Scholar
Kaspi, R., Taylor, P.W. & Yuval, B. (2000) Diet and size influence sexual advertisement and copulatory success of males in Mediterranean fruit fly leks. Ecological Entomology 25, 279284.CrossRefGoogle Scholar
Knipling, E. (1955) Possibilities of insect control or eradication through the use of sexually sterile males. Journal of Economic Entomology 48, 459462.Google Scholar
Lande, R. & Arnold, S.J. (1983) The measurement of selection on correlated characters. Evolution 37, 12101226.Google Scholar
Lux, S.A., Munyiri, F.N., Vilardi, J.C., Liedo, P., Economopoulos, A.P., Hasson, O., Quilici, S., Gaggl, K., Cayol, J.P. & Rendon, P. (2002) Consistency in courtship pattern among populations of medfly Ceratitis capitata: comparison among wild strains and strains mass-reared for SIT operations. Florida Entomologist 85, 113125.Google Scholar
McCombs, S.D. & Saul, S.H. (1995) Translocation-based genetic sexing system for the oriental fruit fly (Diptera: Tephritidae) based on pupal color dimorphism. Annals of the Entomological Society of America 88, 695698.CrossRefGoogle Scholar
McInnis, D.O., Lance, D.R. & Jackson, C.G. (1996) Behavioral resistance to the sterile insect technique by Mediterranean fruit fly (Diptera: Tephritidae) in Hawaii. Annals of the Entomological Society of America 89, 739744.Google Scholar
McInnis, D.O., Shelly, T.E. & Komatsu, J. (2002) Improving male mating competitiveness and survival in the field for medfly, Ceratitis capitata (Diptera: Tephritidae) SIT programs. Genetica 116, 117124.CrossRefGoogle ScholarPubMed
McInnis, D.O., Tam, S., Lim, R., Komatsu, J., Kurashima, R. & Albrecht, C. (2004) Development of a pupal color-based genetic sexing strain of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Annals of the Entomological Society of America 97, 10261033.CrossRefGoogle Scholar
Meza, J.S., Arredondo, J., Orozco, D. & Pérez-Staples, D. (2014) Disparity in sexual behaviour between wild and mass-reared Mexican fruit flies. Physiological Entomology 39, 263270.Google Scholar
Meza-Hernández, J.S. & Díaz-Fleischer, F. (2006) Comparison of sexual compatibility between laboratory and wild Mexican fruit flies under laboratory and field conditions. Journal of Economic Entomology 99, 19791986.Google Scholar
Miyatake, T. (1995) Two-way artificial selection for developmental period in Bactrocera cucurbitae (Diptera: Tephritidae). Annals of the Entomological Society of America 88, 848855.Google Scholar
Miyatake, T. (1996) Comparison of adult life history traits in lines artificially selected for long and short larval and pupal developmental periods in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae). Applied Entomology and Zoology 31, 335343.CrossRefGoogle Scholar
Miyatake, T. (1997) Correlated responses to selection for developmental period in Bactrocera cucurbitae (Diptera: Tephritidae): time of mating and daily activity rhythms. Behavior Genetics 27, 489498.Google Scholar
Miyatake, T. (1998) Genetic variation in pre-mating period of the mass-reared melon fly, Bactrocera cucurbitae (Diptera: Tephritidae). Applied Entomology and Zoology 33, 2933.CrossRefGoogle Scholar
Nation, J.L. (1975) The sex pheromone blend of Caribbean fruit fly males: isolation biological activity, and partial chemical characterization. Environmental Entomology 4, 2730.CrossRefGoogle Scholar
Nation, J.L. (1983). Sex pheromone of the Caribbean fruit fly: chemistry and field ecology. pp. 109111 in Miyamoto, J. & Kearney, P.C. (Eds) IUPAC Pesticide Chemistry, Human Welfare and the Environment. New York, USA, Pergamon Press.Google Scholar
Orozco, D. & Lopez, R.O. (1993). Mating competitiveness of wild and laboratory mass-reared medflies: Effect of male size. pp. 181184 in Aluja, M. & Liedo, P. (Eds) Fruit Flies: Biology and Management. New York, Springer-Verlag.Google Scholar
Orozco, D., Meza, J.S., Zepeda, S., Solís, E. & Quintero, J.L. (2013 a) Tapachula-7, a new genetic sexing strain of the Mexican fruit fly (Diptera: Tephritidae): sexual compatibility and competitiveness. Journal of Economic Entomology 106, 735741.Google Scholar
Orozco, D., Hernández, M.R., Meza, J.S. & Quintero, J.L. (2013 b). Do sterile females affect the sexual performance of sterile males of Anastrepha ludens (Diptera: Tephritidae)? Journal of Applied Entomology 137, 321326.CrossRefGoogle Scholar
Partridge, L. (1987) Male size and mating success in Drosophila melanogaster. The role of female and male behavior. Animal Behaviour 35, 555562.CrossRefGoogle Scholar
Partridge, L. & Fowler, K. (1992) Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster . Evolution 46, 7691.Google Scholar
Partridge, L. & Fowler, K. (1993) Responses and correlated responses to artificial selection on thorax length in Drosophila melanogaster . Evolution 47, 213226.Google Scholar
Pérez-Staples, D., Martínez-Hernández, M.G. & Aluja, M. (2010) Male age and experience increases mating success but not female fitness in the Mexican fruit fly. Ethology 116, 778786.Google Scholar
R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at http://www.R-project.org/ Google Scholar
Robacker, D.C. & Hart, W.G. (1985) (Z)-3-nonenol, (Z,Z)-3,6-nonadienol and (S,S)-(-)-epianastrephin: male produced pheromones of the Mexican fruit fly. Entomologia Experimentalis et Applicata 39, 103108.Google Scholar
Robinson, A.S. & Van Heemert, C. (1982) Ceratitis capitata – a suitable case for genetic sexing. Genetica 58, 229237.Google Scholar
Robinson, A.S., Cayol, J.P. & Hendrichs, J. (2002) Recent findings on medfly sexual behavior: implication for SIT. Florida Entomologist 85, 171181.CrossRefGoogle Scholar
Rocca, J., Nation, J., Strekowski, L. & Battiste, M. (1992) Comparison of volatiles emitted by male Caribbean and Mexican fruit flies. Journal of Chemical Ecology 18, 223244.Google Scholar
Rull, J. & Barreda-Landa, A. (2007) Colonization of a hybrid strain to restore male Anastrepha ludens (Diptera: Tephritidae) mating competitiveness for sterile insect technique programs. Journal of Economic Entomology 100, 752758.Google Scholar
Rull, J., Brunel, O. & Mendez, M.E. (2005) Mass rearing history negatively affects mating success of male Anastrepha ludens (Diptera: Tephritidae) reared for sterile insect technique programs. Journal of Economic Entomology 98, 15101516.Google Scholar
Shelly, T.E. (2001) Outcrossing and the mating competitiveness of male Mediterranean fruit flies (Diptera: Tephritidae): results from the world's oldest mass-reared strain. Proceedings of the Hawaiian Entomological Society 35, 4954.Google Scholar
Shimizu, T., Miyatake, T., Watari, Y. & Arai, T. (1997) A gene pleiotropically controlling developmental and circadian periods in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae). Heredity 79, 600605.CrossRefGoogle Scholar
Takahashi, K.H., Teramura, K., Muraoka, S., Okada, Y. & Miyatake, T. (2012) Genetic correlation between the pre-adult developmental period and locomotor activity rhythm in Drosophila melanogaster . Heredity 110, 312320.CrossRefGoogle ScholarPubMed
Teal, P.E.A., Gomez-Simuta, Y. & Proveaux, A.T. (2000) Mating experience and juvenile hormone enhance sexual signaling and mating in male Caribbean fruit flies. Proceedings of the National Academy of Sciences of the United States of America 97, 37083712.Google Scholar
Telles-Romero, R., Toledo, J., Hernández, E., Quintero-Fong, J.L. & Cruz-López, L. (2011) Effect of temperature on pupa development and sexual maturity of laboratory Anastrepha obliqua adults. Bulletin of Entomological Research 101, 565571.Google Scholar
Wydra, R.L., Harden, D.B., Strekowski, L., Battiste, M.A. & Coxon, J.M. (1992) Conformational analysis of 4,8-dimethyl-3 (E),8 (E) -decadien- 10-olide (E,E-suspensolide), a key component of the pheromones of the male Caribbean and Mexican fruit flies. Tetrahedron 48, 34853494.CrossRefGoogle Scholar
Zar, J.H. (1999) Biostatistical Analysis. 4th edn. Englewood Cliffs, NJ, USA, Prentice-Hall.Google Scholar
Zepeda-Cisneros, C.S., Meza-Hernández, J.S., García-Martínez, V., Ibañez-Palacios, J., Zacharopoulou, A. & Franz, G. (2014) Development, genetic and cytogenetic analyses of genetic sexing strains of the Mexican fruit fly, Anastrepha ludens Loew (Diptera: Tephritidae). BMC Genetics 15(Suppl 2), S1. doi: 10.1186/1471-2156-15-S2-S1.Google Scholar
Zwaan, B., Bijlsma, R. & Hoekstra, R.F. (1995) Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging: direct and correlated responses. Evolution 49, 635648.Google Scholar