Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T11:06:39.107Z Has data issue: false hasContentIssue false

The role of Trichoderma spp. and silica gel in plant defence mechanisms and insect response in vineyard

Published online by Cambridge University Press:  17 May 2019

M. Parrilli*
Affiliation:
Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
D. Sommaggio
Affiliation:
Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
C. Tassini
Affiliation:
Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
S. Di Marco
Affiliation:
C.N.R. (Centro Nazionale delle Ricerche) Area della Ricerca di Bologna, Via Piero Gobetti, 101, 40129, BO, Italy
F. Osti
Affiliation:
C.N.R. (Centro Nazionale delle Ricerche) Area della Ricerca di Bologna, Via Piero Gobetti, 101, 40129, BO, Italy
R. Ferrari
Affiliation:
C.A.A. (Centro Agricoltura Ambiente G. Nicoli), Via Argini Nord 3351, 40014, Località Castello dei Ronchi, Crevalcore, BO, Italy
E. Metruccio
Affiliation:
C.N.R. (Centro Nazionale delle Ricerche) Area della Ricerca di Bologna, Via Piero Gobetti, 101, 40129, BO, Italy
A. Masetti
Affiliation:
Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
G. Burgio
Affiliation:
Dipartimento di Scienze e Tecnologie Agro-Alimentari, DISTAL, Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127, BO, Italy
*
Author for correspondence Phone: +393464231899 Fax: +390512096281 E-mail: [email protected]

Abstract

Several elicitors, stimulating induced resistance mechanisms, have potential in preventing or mitigating pathogen infections. Some of these compounds, triggering the production of jasmonic acid (JA), a precursor of herbivore-induced plant volatiles, could also play a central role in indirect resistance to pest species, by improving beneficial arthropod performance, and necrotrophic pathogens. In the current work, Trichoderma gamsii/T. asperellum and silica gel treatments – alone and in combination – were studied to evaluate the plant defence mechanism on grapevines (Vitis vinifera L.) by laboratory and field trials. JA production level was measured before and after Plasmopara viticola infection on potted vines. JA production induced by silica gel was higher than that caused by Trichoderma before infection. In Trichoderma-treated plants, JA production increased after P. viticola inoculation. In vineyard field trials, Mymaridae (Hymenoptera: Chalcidoidea) showed higher captures in transparent sticky traps on silica gel-treated plants, in comparison with control. On the other hand, no significant attraction was detected for Ichneumonoidea and other Chalcidoidea in silica gel and T. gamsii/T. asperellum-treated plants. The potential effects of elicitors are discussed, in the frame of attract and reward strategy.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altieri, M.A., Nicholls, C.I., Wilson, H. & Miles, A. (2010) Habitat Management in Vineyards. A Growers Manual for Enhancing Natural Enemies. Berkeley, USA, Laboratory of Agroecology, College of Natural Resources University of California.Google Scholar
Bakhat, H. F., Bibi, N., Zia, Z., Abbas, S., Hammad, H. M., Fahad, S., Ashraf, M.R., Shah, G.M., Rabbani, F. & Saeed, S. (2018) Silicon mitigates biotic stresses in crop plants: a review. Crop Protection 104, 2134. https://doi.org/10.1016/j.cropro.2017.10.008.Google Scholar
Burgio, G., Marchesini, E., Reggiani, N., Montepaone, G., Schiatti, P. & Sommaggio, D. (2016) Habitat management of organic vineyard in Northern Italy: the role of cover plants management on arthropod functional biodiversity. Bulletin of Entomological Research 106, 759768. https://doi.org/10.1017/S0007485316000493.Google Scholar
Carvalhais, L.C., Dennis, P.G., Badri, D.V., Tyson, G.W., Vivanco, J.M. & Schenk, P.M. (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 8(2), e56457. https://doi.org/10.1371/journal.pone.0056457.Google Scholar
Conceicao, C. S., Felix, K. C. S., Mariano, R. L. R., Medeiros, E. V. & Souza, E. B. (2014) Combined effect of yeast and silicon on the control of bacterial fruit blotch in melon. Scientia Horticulturae 174(1), 164170.Google Scholar
Coppola, M., Cascone, P., Chiusano, M. L., Colantuono, C., Lorito, M., Pennacchio, F., Rao, R., Woo, S.L., Guerrieri, E. & Digilio, M. C. (2017) Trichoderma harzianum enhances tomato indirect defense against aphids: Trichoderma helps tomatoes attacked by aphids. Insect Science 24(6), 10251033. https://doi.org/10.1111/1744-7917.12475.Google Scholar
Dicke, M. (2009) Behavioural and community ecology of plants that cry for help. Plant, Cell & Environment 32(6), 654665. https://doi.org/10.1111/j.1365-3040.2008.01913.x.Google Scholar
Dicke, M. & van Loon, J. J. A. (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomologia Experimentalis et Applicata 97(3), 237249. https://doi.org/10.1046/j.1570-7458.2000.00736.x.Google Scholar
Djonović, S., Pozo, M. J., Dangott, L. J., Howell, C. R. & Kenerley, C. M. (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Molecular Plant-Microbe Interactions 19, 838853.Google Scholar
Duso, C., Torresan, L. & Vettorazzo, E. (1993) La vegetazione spontanea come riserva di ausiliari: considerazioni sulla diffusione degli Acari Fitoseidi (Acari Phytoseiidae) in un vigneto e sulle piante spontanee contigue. Bollettino di Zoologia Agraria e di Bachicoltura 25(2), 183203.Google Scholar
Duso, C., Malagnini, V., Paganelli, A., Aldegheri, L., Bottini, M. & Otto, S. (2004) Pollen availability and abundance of predatory phytoseiid mites on natural and secondary hedgerows. BioControl 49(4), 397415. https://doi.org/10.1023/B:BICO.0000034601.95956.89.Google Scholar
Duso, C., Pozzebon, A., Kreiter, S., Tixier, M.-S. & Candolfi, M. (2012) Management of phytophagous mites in European vineyards. pp. 191217. in Bostanian, N.J., Vincent, C., & Isaacs, R. (Eds) (A c. Di) Arthropod Management in Vineyards. Dordrecht, Springer Netherlands. https://doi.org/10.1007/978-94-007-4032-7_9.Google Scholar
Fauteux, F., Rémus-Borel, W., Menzies, J. G. & Bélanger, R. R. (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters 249(1), 16. https://doi.org/10.1016/j.femsle.2005.06.034.Google Scholar
Gurr, G.M., Scarratt, S.M., Jacometti, M. & Wratten, S.D. (2007) Management of Pests and Diseases in New Zealand and Australian Vineyards. Biological Control: A Global Perspective. Wallingford, CABI, pp. 392398.Google Scholar
Hahn, M. G. (1996) Microbial elicitors and their receptors in plants. Annual Review of Phytopathology 34(1), 387412. https://doi.org/10.1146/annurev.phyto.34.1.387.Google Scholar
Hajji-Hedfi, L., Regaieg, H., Larayedh, A., Chihani, N. & Horrigue-Raouani, N. (2018) Biological control of wilt disease complex on tomato crop caused by Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici by Verticillium leptobactrum. Environmental Science and Pollution Research 25(19), 1829718302. https://doi.org/10.1007/s11356-017-0233-6.Google Scholar
Hassan, K., Pervin, M., Mondal, F. & Mala, M. (2016) Habitat management: a key option to enhance natural enemies of crop pest. Universal Journal of Plant Science 4(4), 5057.Google Scholar
Heil, M. (2008) Indirect defence via tritrophic interactions. New Phytologist 178(1), 4161. https://doi.org/10.1111/j.1469-8137.2007.02330.x.Google Scholar
Hermosa, R., Viterbo, A., Chet, I. & Monte, E. (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology (Reading, England) 158(1), 1725. https://doi.org/10.1099/mic.0.052274-0.Google Scholar
Irvin, N. A., Bistline-East, A. & Hoddle, M. S. (2016) The effect of an irrigated buckwheat cover crop on grape vine productivity, and beneficial insect and grape pest abundance in southern California. Biological Control 93, 7283. https://doi.org/10.1016/j.biocontrol.2015.11.009.Google Scholar
James, D. G. & Price, T. S. (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. Journal of Chemical Ecology 30(8), 16131628. https://doi.org/10.1023/B:JOEC.0000042072.18151.6f.Google Scholar
Kvedaras, O. L., An, M., Choi, Y. S. & Gurr, G. M. (2010) Silicon enhances natural enemy attraction and biological control through induced plant defences. Bulletin of Entomological Research 100(03), 367371. https://doi.org/10.1017/S0007485309990265.Google Scholar
Li, X., Schuler, M. A. & Berenbaum, M. R. (2002) Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419(6908), 712715. https://doi.org/10.1038/nature01003.Google Scholar
Liu, J., Zhu, J., Zhang, P., Han, L., Reynolds, O. L., Zeng, R., Wu, J., Shao, Y., You, M. & Gurr, G. M. (2017) Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Frontiers in Plant Science 8. https://doi.org/10.3389/fpls.2017.01265.Google Scholar
Loni, A. & Lucchi, A. (2014) Hymenoptera parasitoid, a suitable biodiversity resource for vineyard environmental discrimination. Journal of Agricultural Science 6(12). https://doi.org/10.5539/jas.v6n12p36.Google Scholar
Lucchi, A., Loni, A., Gandini, L. M., Scaramozzino, P., Ioratti, C., Ricciardi, R. & Shearer, P. W. (2017) Using herbivore-induced plant volatiles to attract lacewings, hoverflies and parasitoid wasps in vineyards: achievements and constraints. Bulletin of Insectology 70(2), 273282.Google Scholar
Moraes, J. C., Goussain, M. M., Basagli, M. A. B., Carvalho, G. A., Ecole, C. C. & Sampaio, M. V. (2004) Silicon influence on the tritrophic interaction: wheat plants, the greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and its natural enemies, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Neotropical Entomology 33, 619624.Google Scholar
Nawrocka, J. & Małolepsza, U. (2013) Diversity in plant systemic resistance induced by Trichoderma. Biological Control 67(2), 149156. https://doi.org/10.1016/j.biocontrol.2013.07.005.Google Scholar
Perazzolli, M., Roatti, B., Bozza, E. & Pertot, I. (2011) Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biological Control 58(1), 7482. https://doi.org/10.1016/j.biocontrol.2011.04.006.Google Scholar
Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V. & Samiyappan, R. (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection 20(1), 111. https://doi.org/10.1016/S0261-2194(00)00056-9.Google Scholar
Reynolds, O.L., Keeping, M. G. & Meyer, J. H. (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Annals of Applied Biology 155(2), 171186. https://doi.org/10.1111/j.1744-7348.2009.00348.x.Google Scholar
Reynolds, O.L., Padula, M. P., Zeng, R. & Gurr, G. M. (2016) Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.00744.Google Scholar
Rostas, M. & Turlings, T. C. J. (2008) Induction of systemic acquired resistance in Zea mays also enhances the plant's attractiveness to parasitoids. Biological Control 46, 178186.Google Scholar
Shoresh, M., Yedidia, I. & Chet, I. (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95(1), 7684. https://doi.org/10.1094/PHYTO-95-0076.Google Scholar
Simpson, M., Gurr, G. M., Simmons, A. T., Wratten, S. D., James, D. G., Leeson, G. & Nicol, H.I. (2011 a) Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agricultural and Forest Entomology 13(1), 4557. https://doi.org/10.1111/j.1461-9563.2010.00496.x.Google Scholar
Simpson, M., Gurr, G. M., Simmons, A. T., Wratten, S. D., James, D. G., Leeson, G., Nicol, H.I. & Orre, G. U. S. (2011 b) Field evaluation of the ‘attract and reward’ biological control approach in vineyards. Annals of Applied Biology 159(1), 6978. https://doi.org/10.1111/j.1744-7348.2011.00477.x.Google Scholar
Smith, I. M., Hoffmann, A. A. & Thomson, L. J. (2015) Ground cover and floral resources in shelterbelts increase the abundance of beneficial hymenopteran families: shelterbelts increase wasp abundance. Agricultural and Forest Entomology 17(2), 120128. https://doi.org/10.1111/afe.12086.Google Scholar
Sobhy, I. S., Erb, M., Lou, Y. & Turlings, T. C. J. (2014) The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philosophical Transactions of the Royal Society B: Biological Sciences 369(1639). https://doi.org/10.1098/rstb.2012.0283.Google Scholar
Thomson, L. J. & Hoffmann, A. A. (2007) Effects of ground cover (straw and compost) on the abundance of natural enemies and soil macro invertebrates in vineyards. Agricultural and Forest Entomology 9(3), 173179. https://doi.org/10.1111/j.1461-9563.2007.00322.x.Google Scholar
Thomson, L. J. & Hoffmann, A. A. (2009) Vegetation increases the abundance of natural enemies in vineyards. Biological Control 49(3), 259269. https://doi.org/10.1016/j.biocontrol.2009.01.009.Google Scholar
Thomson, L. J. & Hoffmann, A. A. (2010) Natural enemy responses and pest control: importance of local vegetation. Biological Control 52(2), 160166. https://doi.org/10.1016/j.biocontrol.2009.10.008.Google Scholar
Tucci, M., Ruocco, M., De Masi, L., De Palma, M. & Lorito, M. (2012) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology 12(4), 341354. https://doi.org/10.1111/j.1364-3703.2010.00674.x.Google Scholar
Vivancos, J., Labbe, C., Menzies, J. G. & Belanger, R. R. (2015) Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Molecular Plant Pathology 16, 572582.Google Scholar
Walling, L. (2000) The myriad plant responses to herbivores. Journal of Plant Growth Regulation 19, 195216.Google Scholar
Walters, D. R., Ratsep, J. & Havis, N. D. (2013) Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany 64(5), 12631280. https://doi.org/10.1093/jxb/ert026.Google Scholar
Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q. & Guo, S. (2017) Role of silicon on plant–pathogen interactions. Frontiers in Plant Science 8. https://doi.org/10.3389/fpls.2017.00701.Google Scholar
Zadra, C., Borgogni, A. & Marucchini, C. (2006) Quantification of jasmonic acid by SPME in tomato plants stressed by ozone. Journal of Agricultural and Food Chemistry 54(25), 93179321. https://doi.org/10.1021/jf062249r.Google Scholar
Supplementary material: File

Parrilli et al. supplementary material

Table S1

Download Parrilli et al. supplementary material(File)
File 13.6 KB