Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T16:35:59.508Z Has data issue: false hasContentIssue false

Role of plant volatiles and hetero-specific pheromone components in the wind tunnel response of male Grapholita molesta (Lepidoptera: Tortricidae) to modified sex pheromone blends

Published online by Cambridge University Press:  27 February 2017

B. Ammagarahalli*
Affiliation:
Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
L. Chianella
Affiliation:
Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
P. Gomes
Affiliation:
Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
C. Gemeno*
Affiliation:
Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
*
*Author for correspondence Phone: +34 (973)702531 Fax: +34 (973)238264 E-mail: [email protected] and [email protected]
*Author for correspondence Phone: +34 (973)702531 Fax: +34 (973)238264 E-mail: [email protected] and [email protected]

Abstract

Female Grapholita molesta (Busck) release a pheromone blend composed of two stereoisomeric acetates (Z8-12:Ac and E8-12:Ac), which in a 100:6 ratio stimulate maximum conspecific male approach. Z8-12:OH is described as a third pheromone component that increases responses to the acetate blend. Departures from the optimal pheromone blend ratio, or too high or low pheromone doses of the optimal blend ratio, result in lower male response. In a previous study, we show that plant volatiles synergize male response to a suboptimal-low pheromone concentration. In the present study, we show that the plant blend does not synergize male response to a suboptimal-high pheromone dose. The plant blend, however, synergized male response to pheromone blends containing unnatural Z:E-acetate isomer ratios. We revisited the role of alcohols in the pheromone response of G. molesta by replacing Z8-12:OH with conspecific and heterospecific pheromone alcohols or with plant odors. Codlemone, the alcohol sex pheromone of Cydia pomonella L., E8, E10-12:OH, did supplant the role of Z8-12:OH, and so did the plant volatile blend. Dodecenol (12:OH), which has been described as a fourth pheromone component of G. molesta, also increased responses, but not as much as Z8-12:OH, codlemone or the plant blend. Our results reveal new functions for plant volatiles on moth sex pheromone response under laboratory conditions, and shed new light on the role of alcohol ingredients in the pheromone blend of G. molesta.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45220, USA.

References

Ammagarahalli, B. & Gemeno, C. (2014) Response profile of pheromone receptor neurons in male Grapholita molesta (Lepidoptera: Tortricidae). Journal of Insect Physiology 71, 128136.Google Scholar
Ammagarahalli, B. & Gemeno, C. (2015) Interference of plant volatiles on pheromone receptor neurons of male Grapholita molesta (Lepidoptera: Tortricidae). Journal of Insect Physiology 81, 118128.CrossRefGoogle ScholarPubMed
Badeke, E., Haverkamp, A., Hansson, B.S. & Sachse, S. (2016) A challenge for a male noctuid moth? Discerning the female sex pheromone against the background of plant volatiles. Frontiers in Physiology 7, https://dx.doi.org/10.3389%2Ffphys.2016.00143..Google Scholar
Baker, T.C. & Carde, R.T. (1979) Analysis of pheromone-mediated behaviour in male Grapholita molesta, the oriental fruit moth (Lepidoptera: Tortricidae). Environmental Entomology 8, 956968.CrossRefGoogle Scholar
Baker, T.C., Cardé, R.T. & Miller, J.R. (1980) Oriental fruit moth pheromone component emission rates measured after collection by glass-surface adsorption. Journal of Chemical Ecology 6, 749758.Google Scholar
Baker, T.C., Meyer, M. & Roelofs, W.L. (1981) Sex pheromone dosage and blend specificity of response by Oriental fruit moth males. Entomologia Experimentalis et Applicata 30, 269279.Google Scholar
Barrozo, R.B., Gadenne, C. & Anton, S. (2010) Switching attraction to inhibition: mating-induced reversed role of sex pheromone in an insect. Journal of Experimental Biology 213, 29332939.Google Scholar
Boo, K.S. (1998) Variation in sex pheromone composition of a few selected lepidopteran species. Journal of Asia-Pacific Entomology 1, 1723.CrossRefGoogle Scholar
Bruce, T.J., Wadhams, L.J. & Woodcock, C.M. (2005) Insect host location: a volatile situation. Trends in Plant Science 10, 269274.CrossRefGoogle ScholarPubMed
Cardé, A.M., Baker, T.C. & Cardé, R.T. (1979) Identification of a four component sex pheromone of the female oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Journal of Chemical Ecology 5, 423427.Google Scholar
Cardé, R.T. & Haynes, K.F. (2004) Structure of the pheromone communication channel in moths. pp. 283332 in Cardé, R.T. & Millar, J.R. (Eds) Advances in Insect Chemical Ecology. Cambridge, UK: Cambridge University Press.Google Scholar
Cardé, R.T., Baker, T.C. & Roelofs, W.L. (1975 a) Ethological function of components of a sex attractant system for Oriental fruit moth males, Grapholita molesta (Lepidoptera: Tortricidae). Journal of Chemical Ecology 1, 475491.Google Scholar
Cardé, R.T., Baker, T.C. & Roelofs, W.L. (1975 b) Behavioural role of individual components of a multichemical attractant system in the Oriental fruit moth. Nature 253, 348349.Google Scholar
De Bruyne, M. & Baker, T.C. (2008) Odor detection in insects: volatile codes. Journal of Chemical Ecology 34, 882897.Google Scholar
Deisig, N., Kropf, J., Vitecek, S., Pevergne, D., Rouyar, A., Sandoz, J.C., Lucas, P., Gadanne, C., Anton, S. & Barrozo, R. (2012) Differential interactions of sex pheromone and plant odour in the olfactory pathway of a male moth. PLoS ONE 7, e33159.Google Scholar
Deisig, N., Dupuy, F., Anton, S. & Renou, M. (2014) Responses to pheromones in a complex odor world: sensory processing and behavior. Insects 5, 399422.CrossRefGoogle Scholar
Deng, J.Y., Wei, H.Y., Huang, Y.P. & Du, J.W. (2004) Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. Journal of Chemical Ecology 30, 20372045.Google Scholar
Dickens, J.C., Smith, J.W. & Light, D.M. (1993) Green leaf volatiles enhance sex attractant pheromone of the tobacco budworm, Heliothis virescens (Lep.: Noctuidae). Chemoecology 4, 175177.CrossRefGoogle Scholar
El-Sayed, A.M. & Trimble, R.M. (2002) Relative attractiveness of natural and synthetic pheromone of three tortricid tree fruit pests. Environmental Entomology 31, 960964.Google Scholar
Evenden, M.L. & McClaughlin, J.R. (2005) Male Oriental fruit moth response to a combined pheromone-based attracticide formulation targeting both Oriental fruit moth and codling moth (Lepidoptera: Tortricidae). Journal of Economic Entomology 98, 317325.Google Scholar
Guerin, P.M., Arn, H., Buser, H.R., Charmillot, P., Tóth, M. & Sziráki, G. (1986) Sex pheromone of Grapholita funebrana occurrence of Z-8- and Z-10-tetradecenyl acetate as secondary components. Journal of Chemical Ecology 12, 13611368.CrossRefGoogle Scholar
Hillier, N.K. & Vickers, N.J. (2011) Mixture interactions in moth olfactory physiology: examining the effects of odorant mixture, concentration, distal stimulation, and antennal nerve transection on sensillar responses. Chemical Senses 36, 93108.CrossRefGoogle ScholarPubMed
Ivaldi-Sender, C. (1974) Techniques simples pour un e'levage permanent de la tordeuse orientale, Grapholita molesta (Lepidoptera: Tortricidae) sur milieu artificiel. Annales de Zoologie et Ecologie Animales 6, 337343.Google Scholar
Knight, A., Light, D. & Chebny, V. (2012) Monitoring codling moth (Lepidoptera: Tortricidae) in orchards treated with pear ester and sex pheromone combo dispensers. Journal of Applied Entomology 137, 214224.Google Scholar
Knight, A.L., Cichon, L., Lago, J., Fuentes-Contreras, E., Barros-Parada, W., Hull, L., Krawczyk, G., Zoller, B., Hansen, R., Hilton, R. & Basoalto, E. (2014) Monitoring oriental fruit moth and codling moth (Lepidoptera: Tortricidae) with combinations of pheromones and kairomones. Journal of Applied Entomology 138, 783794.Google Scholar
Knight, A.L., Barros-Parada, W., Bosch, D., Escudero-Colomar, L.A., Fuentes-Contreras, E., Hernández-Sánchez, J., Yung, C., Kim, Y., Kovanci, O.B., Levi, A., Lo, P., Molinari, F., Valls, J. & Gemeno, C. (2015) Similar worldwide patterns in the sex pheromone signal and response in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Bulletin of Entomological Research 105, 2331.Google Scholar
Kong, W.N., Li, J., Fan, R.J., Li, S.C. & Ma, R.Y. (2014) Sex-pheromone-mediated mating disruption technology for the oriental fruit moth, Grapholita molesta (Busck)(Lepidoptera: Tortricidae): Overview and Prospects. Psyche: A Journal of Entomology (ID253924).Google Scholar
Kramer, E. (1992) Attractivity of pheromone surpassed by time-patterned application of two nonpheromone compounds. Journal of Insect Behavior 5, 8397.CrossRefGoogle Scholar
Kuenen, L.P.S. & Baker, T.C. (1982) The effects of pheromone concentration on the flight behaviour of the oriental fruit moth, Grapholita molesta . Physiological Entomology 7, 423434.Google Scholar
Kvedaras, O.L., Del Socorro, A.P. & Gregg, P.C. (2007) Effects of phenylacetaldehyde and (Z)-3-hexenyl acetate on male response to synthetic sex pheromone in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Australian Journal of Entomology 46, 224230.Google Scholar
Lacey, M.J. & Sanders, C.J. (1992) Chemical composition of sex pheromone of oriental fruit moth and rates of release by individual female moths. Journal of Chemical Ecology 18, 14211435.Google Scholar
Landolt, P.J. & Phillips, T.W. (1997) Host plant influences on sex pheromone behavior of phytophagous insects. Annual Review of Entomology 42, 371391.CrossRefGoogle ScholarPubMed
Li, P., Zhu, J. & Qin, Y. (2012) Enhanced attraction of Plutella xylostella (Lepidoptera: Plutellidae) to pheromone-baited traps with the addition of green leaf volatiles. Journal of Economic Entomology 105, 11491156.Google Scholar
Light, D.M., Flath, R.A., Buttery, R.G., Zalom, F.G., Rice, R.E., Dickens, J.C. & Jang, E.G. (1993) Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and the codling moth (Lepidoptera). Chemoecology 4, 145152.Google Scholar
Linn, C.E. Jr. & Roelofs, W.L. (1983) Effect of varying proportions of the alcohol component on sex pheromone blend discrimination in male oriental fruit moths. Physiological Entomology 8, 291306.Google Scholar
Martin, J.P. & Hildebrand, J.G. (2010) Innate recognition of pheromone and food odors in moths: a common mechanism in the antennal lobe? Frontiers in Behavioral Neuroscience 4, 159.CrossRefGoogle ScholarPubMed
Meagher, R.L. Jr. (2001) Trapping fall armyworm (Lepidoptera: Noctuidae) adults in traps baited with pheromone and a synthetic floral volatile compound. Florida Entomologist 84, 288292.Google Scholar
Meagher, R.L. Jr. & Mitchell, E.R. (1998) Phenylacetaldehyde enhances upwind flight of male fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) to its sex pheromone. Florida Entomologist 81, 556559.Google Scholar
Ochieng, S., Park, K. & Baker, T. (2002) Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea . Journal of Comparative Physiology A 188, 325333.Google Scholar
Party, V., Hanot, C., Said, I., Rochat, D. & Renou, M. (2009) Plant terpenes affect intensity and temporal parameters of pheromone detection in a moth. Chemical Senses, Available online at http://dx.doi.org/10.1093/chemse/bjp060.Google Scholar
Party, V., Hanot, C., Büsser, D.S., Rochat, D. & Renou, M. (2013) Changes in odor background affect the locomotory response to pheromone in moths. PloS ONE 8(1), e52897.Google Scholar
Peñuelas, J. & Llusià, J. (2004) Plant VOC emissions: making use of the unavoidable. Trends in Ecology & Evolution 19, 402404.Google Scholar
Piñero, J.C. & Dorn, S. (2007) Synergism between aromatic compounds and green leaf volatiles derived from the host plant underlies female attraction in the oriental fruit moth. Entomologia Experimentalis et Applicata 125, 185194.Google Scholar
R Development Core Team (2015) R: a Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing, ISBN 3-900051-07-0.Google Scholar
Reinecke, A. & Hilker, M. (2014) Plant semiochemicals – perception and behavioural responses by insects. pp. 115153 in Voelckel, C. & Jander, G. (Eds) Annual Plant Reviews Volume 47: Insect-Plant Interactions. Chichester, UK, John Wiley & Sons, Ltd.Google Scholar
Rodriguez-Saona, C.R. & Stelinski, L.L. (2009) Behavior-modifying strategies in IPM: theory and practice. pp. 263315 in Peshin, C. & Dhawan, A.K. (Eds) Integrated Pest Management: Innovation-Development Process. The Netherlands, Springer.Google Scholar
Roelofs, W.L. & Carde, R.T. (1974) Oriental fruit moth and lesser appleworm attractant mixtures refined. Environmental Entomology 3, 586588.Google Scholar
Roelofs, W.L., Comeau, A. & Selle, R. (1969) Sex pheromone of the oriental fruit moth. Nature 224, 723.Google Scholar
Rothschild, G.H.L. & Vickers, R.A. (1991) Biology, ecology and control of the oriental fruit moth. pp. 389412 in Van der Geest, L.P.S. & Evenhus, H.H. (Eds) Tortricid Pests: their Biology, Natural Enemies and Control, vol. 5. Amsterdam, Elsevier.Google Scholar
Schmera, D. & Guerin, P.M. (2012) Plant volatile compounds shorten reaction time and enhance attraction of the codling moth (Cydia pomonella) to codlemone. Pest Management Science 68, 454461.Google Scholar
Schmidt-Büsser, D., Von Arx, M. & Guerin, P.M. (2009) Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone. Journal of Comparative Physiology A 195, 853864.Google Scholar
Stockel, J.P. & Boidron, J.N. (1981) Influence d'extraits aromatiques de grains de maïs sur l'activite reprodutrice de l'alucite des cèrèales Sitotraga cerealella (Lepidoptera : Gelechiidae) en conditions naturelles. Comptes Rendus de l'Académie des Sciences 292, 343346.Google Scholar
Szendrei, Z. & Rodriguez-Saona, C. (2010) A meta-analysis of behavioral manipulation of insect pests with plant volatiles. Entomologia Experimentalis et Applicata 134, 201210.CrossRefGoogle Scholar
Varela, N., Avilla, J., Anton, S. & Gemeno, C. (2011) Synergism of pheromone and host-plant volatile blends in the attraction of Grapholita molesta males. Entomologia Experimentalis et Applicata 141, 114122.Google Scholar
Von Arx, M., Schmidt-Büsser, D. & Guerin, P. (2012) Plant volatiles enhance behavioral responses of grapevine moth males, Lobesia botrana to sex pheromone. Journal of Chemical Ecology 38, 222225.Google Scholar
Willis, M.A. & Baker, T.C. (1988) Effects of varying sex pheromone component ratios on the zigzagging flight movements of the oriental fruit moth, Grapholita molesta . Journal of Insect Behavior 1, 357371.Google Scholar
Witzgall, P., Kirsch, P. & Cork, A. (2010) Sex pheromones and their impact on pest management. Journal of Chemical Ecology 36, 80100.Google Scholar
Xiao, C., Gregg, P.C., Hu, W., Yang, Z. & Zhang, Z. (2002) Attraction of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), to volatiles from wilted leaves of a non-host plant, Pterocarya stenoptera . Applied Entomology and Zoology 37, 16.Google Scholar
Yang, C.Y., Jung, J.K., Han, K.S., Boo, K.S. & Yiem, M.S. (2002) Sex pheromone composition and monitoring of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) in Naju pear orchards. Journal of Asia Pacific Entomology 5, 201207.Google Scholar
Yu, H., Feng, J., Zhang, Q. & Xu, H. (2015) (Z)-3-hexenyl acetate and 1-undecanol increase male attraction to sex pheromone trap in Grapholita molesta (Busck)(Lepidoptera: Tortricidae). International Journal of Pest Management 61, 16.Google Scholar