Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T08:21:41.992Z Has data issue: false hasContentIssue false

The retardation of puparium formation in Diptera: could factors other than ecdysone control cuticle stabilisation in Glossina and Sarcophaga species?

Published online by Cambridge University Press:  10 July 2009

D. L. Whitehead
Affiliation:
School of Biological Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9QG, England

Abstract

Evidence gained using blowflies (Calliphora vicina R.-D., Lucilia sericata (Mg.), L. cuprina (Wied.) and Protophormia terraenovae (R.-D.) ), fleshflies (Sarcophaga spp.) and tsetse flies (Glossina spp.) in ligaturing experiments and by the injection of prepupal haemolymph (with added ecdysone) suggests that factors other than ecdysone, released in the posterior segments, may initiate pupariation. They could act as synergists for ecdysone. Puparium formation is reduced from 77·5±3·1% to 35·7±2·8% (P<0·001) if 50 ng α-ecdysone is injected through the anterior knot into the middle region of twice-ligatured Sarcophaga argyrostoma (R.-D.) larvae instead of into the abdomens of singly tied larvae. The pupariation score is increased to 57·2±4·8% if haemolymph from rounded-off prepupae is injected into the middle region of isolated abdomens. The uninjected posterior region sometimes darkens alone. Ligature of the abdomens of S. peregrina R.-D. and S. argyrostoma prepupae which have just reached the orange-peritreme stage before rounding-off confines the pupariation to the posterior segments.

The effects of retarding puparium formation for 12–24 h by the use of dopa decarboxylase inhibitors or by means of a loose constriction (‘ cummerbund‘) are reported because the location of the patches of cuticle which stabilise and darken as the inhibition slowly wears off implicates certain areas under the integument as the sites of production or secretion of puparial tanning hormone or ‘ posterior darkening factor ’. Retardation of pupariation results from the pressure stimulus applied to rounded-off prepupae because either a hormone is held back or an inhibitor is released as a consequence of the distortion of the cuticle by the cummerbund. When fleshfly larvae are tightly ligatured every hour in front of or behind the brain for 18 h after removal from a moist environment which inhibits pupariation, the percentage of larvae which pupariate in both situations suggests that the CNS itself can inhibit pupariation of the anterior region because of the presence of the stricture. This inhibition, which is not due to lack of oxygen, can be reversed by the presence of factors produced in the abdomen.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bodenstein, D. (1950). The post embryonic development of Drosophila, pp. 275364. In Demerec, M. (Ed.) Biology of Drosophila.—632 pp. New York, Wiley.Google Scholar
Bodnaryk, R. P. (1970 a). Chemical taxonomy: an application to the genus Sarcophaga (Diptera: Sarcophagidae).—Can. Ent. 102, 349353.CrossRefGoogle Scholar
Bodnaryk, R. P. (1970 b). Effect of dopa-decarboxylase inhibition on the metabolism of β-alanyl-L-tyrosine during puparium formation in the fleshfly Sarcophaga bullata Parker.—Comp. Biochem. Physiol. 35, 221227.CrossRefGoogle Scholar
Bonner Weir, S. (1970). Control of moulting in an insect.—Nature, Lond. 228, 580581.CrossRefGoogle Scholar
Borst, D. W. & O'Connor, J. D. (1972). Arthropod molting hormone: radioimmune assay.—Science, N.Y. 178, 418419.CrossRefGoogle ScholarPubMed
Burkard, W. P., Gey, K. F. & Pletscher, A. (1964). Inhibition of decarboxylase of aromatic amino acids by 2, 3 4- trihydroxybenzyl hydrazine and its seryl derivative.—Archs Biochem. Biophys. 107, 187196.CrossRefGoogle Scholar
Buxton, P. A. (1955). The natural history of tsetse flies. An account of the biology of the genus Glossina (Diptera).—Mem. Ser. Lond. Sch. Hyg. trop. Med. no. 10. 315370.Google Scholar
Chang, F. (1972). The effect of ligation on tanning in the larva of a Tachinid parasite, Lespesia archippivora.—J. Insect Physiol. 18, 729735.CrossRefGoogle Scholar
Chino, H., Sakurai, S., Ohtaki, T., Ikekawa, N., Miyazaki, H., Ishibashi, M. & Abuki, H. (1974). Biosynthesis of α-ecdysone by prothoracic gland in vitro.—Science, N.Y. 183,529530.CrossRefGoogle ScholarPubMed
Cottrell, C. B. (1962). General observations on the imaginal ecdysis of blowflies.—Trans. R. ent. Soc. Lond. 114, 317333.CrossRefGoogle Scholar
Cottrell, C. B. (1964). Insect ecdysis with particular emphasis on cuticular hardening and darkening.—Adv. Insect Physiol. 2, 175218.CrossRefGoogle Scholar
Crossley, A. C. S. (1964). An experimental analysis of the origins and physiology of haemocytes in the blue blow-fly (Calliphora erythrocephala (Meig.)).—J. exp. Zool. 157, 375397.CrossRefGoogle Scholar
Dennell, R. (1947). A study of an insect cuticle: the formation of the puparium of Sarcophaga falculata Pand. (Diptera).—Proc. R. Soc. (B) 133, 79110.Google Scholar
Dennell, R. (1958). The hardening of insect cuticles.—Biol. Rev. 33, 178196.CrossRefGoogle Scholar
Ellis, P. E., Morgan, E. D. & Woodbridge, A. P. (1972). Moult-inducing hormones of the prothoracic gland of insects.—Nature, Lond. 238, 274276.CrossRefGoogle Scholar
Finlayson, L. H. (1967). Behaviour and regulation of puparium formation in the larva of the tsetse fly Glossina morsitans orientalis Vanderplank in relation to humidity, light, and mechanical stimuli.—Bull. ent. Res. 57, 301313.CrossRefGoogle ScholarPubMed
Finlayson, L. H. (1968). Proprioreceptors in the invertebrates.—Symp. zool. Soc. Lond. no. 23, 217249.Google Scholar
Finlayson, L. H. (1972). Chemoreceptors, cuticular mechanoreceptors, and peripheral multiterminal neurones in the larva of the tsetse fly (Glossina).—J. Insect Physiol. 18,22652275.CrossRefGoogle ScholarPubMed
Finlayson, L. H. & Osborne, M. P. (1968). Peripheral neurosecretory cells in the stick insect (Carausius morosus) and the blowfly larva (Phormia terrae-novae).—J. Insect Physiol. 14, 17931801.CrossRefGoogle ScholarPubMed
Finlayson, L. H. & Osborne, M. P. (1970). Electrical activity of neurohaemal tissue in the stick insect Carausius morosus.—J. Insect. Physiol. 16, 791800.CrossRefGoogle ScholarPubMed
Fraenkel, G. S. (1935). A hormone causing pupation in the blowfly (Calliphora erythrocephala).—Proc. R. Soc. (B.) 118, 112.Google Scholar
Fraenkel, G. S. & Hsiao, C. (1965). Bursicon, a hormone which mediates tanning of the cuticle in the adult fly and other insects.—J. Insect. Physiol. 11, 513556.CrossRefGoogle Scholar
Fraenkel, G. S. & Zdarek, J. (1970). The evaluation of the “ Calliphora test ” as an assay for ecdysone.—Biol. Bull. 139, 138150.CrossRefGoogle ScholarPubMed
Fraenkel, G. S., Zdarek, J. & Sivasubramanian, P. (1972). Hormonal factors in the CNS and hemolymph of pupariating fly larvae which accelerate puparium formation and tanning.—Biol. Bull. 143, 127139.CrossRefGoogle Scholar
Gilbert, L. I., Applebaum, S., Gorell, T. A., Siddall, J. B. & Siew, Y. C. (1971). Aspects of research on insect growth hormones.—Bull. Wld Hlth Org. 44, 397398.Google ScholarPubMed
Hackman, R. H. & Goldberg, M. (1971). Studies on the hardening and darkening of insect cuticles.—J. Insect Physiol. 17, 335347.CrossRefGoogle Scholar
Kambysellis, M. P. & Williams, C. B. (1971). In vitro development of insect tissues; II. The role of ecdysone in the spermatogenesis of silkworms.—Biol. Bull. 141, 541552.CrossRefGoogle Scholar
Karlson, P. (1965). Biochemical studies of ecdysone control of chromosomal activity.—J. cell. comp. Physiol. 66, 6976.CrossRefGoogle ScholarPubMed
Karlson, P. & Bode, C. (1969). Die Inaktivierung des Ecdysons bei der Schmeissfliege Calliphora erythrocephala Meigen.—J. Insect. Physiol. 15, 111118.CrossRefGoogle Scholar
Karlson, P. & Hoffmeister, H. (1963). Zur Biogenese des Ecdysons. I. Umwandlung von Cholesterin in Ecdyson.—Hoppe-Seyler's Z. physiol. Chem. 331, 298300.CrossRefGoogle Scholar
Karlson, P. & Sekeris, C. E. (1962). Zum Tyrosinstoffwechsel der Insekten. IX. Kontrolle des Tyrosinstoffwechsels durch Ecdyson.—Biochim. Biophys. Acta 63, 489495.CrossRefGoogle Scholar
Karlson, P. & Sekeris, C. E. (1966). Biochemical mechanisms of hormone action.—Acta Endocrinol. 53, 505518.Google ScholarPubMed
Karlson, P. & Shaaya, E. (1964). Der Ecdysontiter während der Insektenentwicklung-I. Eine Methode zur Bestimmung der Ecdysongehalts,—J. Insect Physiol. 10, 797804.CrossRefGoogle Scholar
King, D. S. (1972). Metabolism of α-ecdysone and possible immediate precursors by insects in vivo and in vitro.—Gen. & Comp. Endocrinol., Suppl. no. 3, 221227.CrossRefGoogle Scholar
Klemm, N. (1972). Monoamine-containing nervous fibres in foregut and salivary gland of the desert locust, Schistocerca gregaria Forskal (Orthoptera, Acrididae).—Comp. Biochem. Physiol. 43A, 207211.CrossRefGoogle Scholar
Koeppe, J. K. & Gilbert, L. I. (1973). Immunochemical evidence for the transport of haemolymph protein into the cuticle of Manduca sexta.—J. Insect Physiol. 19,615624.CrossRefGoogle ScholarPubMed
Kroeger, H. (1968). Gene activities during insect metamorphosis and their control by hormones, pp. 185220. In Etkin, W. & Gilbert, L. I. (Eds) Metamorphosis.—459 pp. Amsterdam, North-Holland.Google Scholar
Langley, P. A. (1967). Effect of ligaturing on puparium formation in the larva of the tsetse fly Glossina morsitans Westwood.—Nature, Lond. 214, 389390.CrossRefGoogle ScholarPubMed
Locke, M. (1969). The ultrastructure of the oenocytes in the molt/intermolt cycle of an insect.—Tissue & Cell 1, 103154.CrossRefGoogle ScholarPubMed
Malek, S. R. A. (1957). Sclerotization and melanization: two independent processes in the cuticle of the desert locust.—Nature, Lond. 180, 237.CrossRefGoogle Scholar
McLintock, J. (1964). Puparium formation in Diptera.—Nature, Lond. 201, 1245.CrossRefGoogle ScholarPubMed
Mills, R. R. & Whitehead, D. L. (1970). Hormonal control of tanning in the American cockroach: changes in blood cell permeability during ecdysis.—J. Insect Physiol. 16, 331340.CrossRefGoogle Scholar
Moriyama, H., Nakanishi, K., King, D. S., Okauchi, T., Siddall, J. B. & Hafferl, W. (1970).On the origin and metabolic fate of α-ecdysone in insectsGen. & Comp.Endocrinol. 15, 8087.CrossRefGoogle ScholarPubMed
Nakanishi, K., Moriyama, H., Okauchi, T., Fujioka, S. & Koreeda, M. (1972). Biosynthesis of α- and β-ecdysones from cholesterol outside the prothoracic gland in Bombyx moriScience N.Y. 176, 5152.CrossRefGoogle ScholarPubMed
Nappi, A. J. & Stoffolano, J. (1972). Distribution of haemocytes in larvae of Musca domestica and Musca autumnalis and possible chemotaxis during parasitization.—J. Insect Physiol. 18, 169179.CrossRefGoogle Scholar
Ohtaki, T. (1966). On the delayed pupation of the fleshfly Sarcophaga peregrina Robineau-Desvoidy.—Jap. J. med. Sci. Biol. 19, 97104.CrossRefGoogle Scholar
Ohtaki, T., Milkman, R. D. & Williams, C. M. (1968). Dynamics of ecdysone secretion and action in the fleshfly Sarcophaga peregrina.—Biol. Bull. 135, 322334.CrossRefGoogle ScholarPubMed
Ohtaki, T. & Williams, C. M. (1970). Inactivation of α-ecdysone and cyasterone by larvae of the fleshfly Sarcophaga peregrina and pupae of the silkworm Samia cynthia.—Biol. Bull. 138, 326333.CrossRefGoogle Scholar
Pipa, R. L. (1971). Neuroendocrine involvement in the delayed pupation of space-deprived Galleria mellonella (Lepidoptera).—J. Insect Physiol. 17, 24412450.CrossRefGoogle ScholarPubMed
Post, L. C. (1972). Bursicon: its effect on tyrosine permeation into insect haemocytes.—Biochim. biophys. Acta 290, 424428.CrossRefGoogle ScholarPubMed
Price, G. M. (1970). Pupation inhibiting factor in the larva of the blowfly Calliphora erythrocephala.—Nature, Lond. 228, 876877.CrossRefGoogle ScholarPubMed
Pryor, M. G. M. (1962). Sclerotisation. pp. 371396. In Florkin, M. & Mason, H. (Eds) Comparative biochemistry, Vol. 4.—841 pp. New York, Academic Press.CrossRefGoogle Scholar
Ratnasiri, N. B. & Fraenkel, G. S. (1973). Inhibition of pupariation in Sarcophaga bullata.—Nature, Lond. 243, 9193.CrossRefGoogle Scholar
Romer, F. (1971). Hautungshormone in den Oenocyten des Mehlkäfers.—Naturwissenschaften 58, 324325.CrossRefGoogle Scholar
Sekeris, C. E. & Karlson, P. (1966). Biosynthesis of catecholamines in insects.—Pharmac. Rev. 18, 8994.Google ScholarPubMed
Seligman, I. M., Friedman, S. & Fraenkel, G. S. (1969). Bursicon mediation of tyrosine hydroxylation during tanning of the adult cuticle of the fly Sarcophaga bullata.—J. Insect Physiol. 15, 553561.CrossRefGoogle ScholarPubMed
Srivastava, U. S. (1960). Secretory cycle and disappearance of the prothoracic glands in Tenebrio molitor L. (Coleoptera: Tenebrionidae)Experentia 16, 445446.CrossRefGoogle Scholar
Thomson, J. A., Siddall, J. B., Galbraith, M. N., Horn, D. H. S. & Middleton, E. J. (1969). The biosynthesis of ecdysones in the blowfly Calliphora stygia.—Chem.Commun. no. 12, 669670.CrossRefGoogle Scholar
Thomson, J. A. & Sin, Y. T. (1970). The control of prophenoloxidase activation in larval haemolymph of Calliphora.—J. Insect Physiol. 16, 20632074.CrossRefGoogle ScholarPubMed
Whitehead, D. L. (1970). L- dopa decarboxylase in the haemocytes of Diptera.—FEBS Letters (Fed. Eur. Biochem. Socs.) 7, 263266.CrossRefGoogle ScholarPubMed
Whitehead, D. L. (1971). Studies on the control of pupariation in tsetse-flies.—Trans. R. Soc. trop. Med. Hyg. 65, 224225.CrossRefGoogle Scholar
Whitehead, D. L. (1973 a). Ecdysone and the stabilization of insect cuticle.—J. Endocr. 57, 1.Google Scholar
Whitehead, D. L. (1973 b). The events preceding formation of the puparium in Glossina larvae.—Trans. R. Soc. trop. Med. Hyg. 67, 300301.CrossRefGoogle ScholarPubMed
Whitehead, D. L. (in press). In vitro metabolism of 14C tryrosine in the haemolymph of Glossina larvae.—Trans. R. Soc. trop. Med. Hyg.Google Scholar
Written, J. M. (1963). Observations on the cyclorrhaphan larval peripheral nervous system: muscle and tracheal receptor organs and independent peripheral Type II neurons associated with the lateral segmental nerves.—Ann. ent. Soc. Am. 56, 755763.Google Scholar
Wigglesworth, V. B. (1957). The action of growth hormones in insects.—Symp. Soc exp Biol. 11, 204227.Google ScholarPubMed
Wigglesworth, V. B. (1964). The hormonal regulation of growth and reproduction in insects. Adv. Insect Physiol. 2, 247336.CrossRefGoogle Scholar
Wigglesworth, V. B. (1970). Insect hormones.—pp. 1527. Edinburgh, Oliver & Boyd.Google Scholar
Wigglesworth, V. B. (1973). Haemocytes and basement membrane formation in Rhodnius.—J. Insect Physiol. 19, 831844.CrossRefGoogle Scholar
Willig, A., Rees, H. H. & Goodwin, T. (1971). Biosynthesis of insect moulting hormones in isolated ring glands and whole larvae of Calliphora.—J. Insect Physiol. 17, 23172326.CrossRefGoogle Scholar
Zdarek, J. & Fraenkel, G. S. (1970). Overt and covert effects of endogenous and exogenous ecdysone in puparium formation of flies.—Proc. natn. Acad. Sci. 67, 331337.CrossRefGoogle ScholarPubMed
Zdarek, J. & Fraenkel, G. S. (1971). Neurosecretory control of ecdysone release during puparium formation of flies.—Gen. & Comp. Endocrinol. 17, 483489.CrossRefGoogle ScholarPubMed