Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T05:11:30.877Z Has data issue: false hasContentIssue false

Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae)

Published online by Cambridge University Press:  01 July 2008

S. Van Pottelberge
Affiliation:
Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
T. Van Leeuwen*
Affiliation:
Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
R. Nauen
Affiliation:
Bayer CropScience AG, Research Insecticides, Insect Toxicology and Resistance, Geb. 6220, Alfred-Nobel-Str., 40789 Monheim, Germany
L. Tirry
Affiliation:
Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
*
*Author for correspondence Fax: +32 (0)9 264 62 39 E-mail: [email protected]

Abstract

A Belgian field strain (MR-VP) of Tetranychus urticae (Koch) (Acari: Tetranychidae) exhibits different levels of resistance to four frequently used METI (mitochondrial electron transport inhibitor)-acaricides, i.e. tebufenpyrad, fenpyroximate, pyridaben and fenazaquin. Resistance factors for these compounds were 184, 1547, 5971 and 35, respectively. A 23.5-fold increase in 7-ethoxy-4-trifluoromethylcoumarin O-deethylation activity suggested that metabolic resistance through elevated levels of cytochrome P450 dependent monooxygenase-activity is a possible resistance mechanism.

However, synergism studies with different metabolic inhibitors revealed some contrasting resistance mechanisms between the METI-acaricides. Tebufenpyrad resistance could only be synergized after pre-treatment with the monooxygenase inhibitor piperonyl butoxide (PBO), whereas pyridaben resistance was strongly synergized both by PBO and the esterase inhibitor S,S,S-tributylphosphorotrithioate (DEF). Resistance levels to fenpyroximate could neither be suppressed by PBO nor by DEF. Although METI-acaricides are structurally related, these findings probably reflect a different role of esterases and mono-oxygenases in metabolic detoxification between these compounds. The overall lack of synergism by diethylmaleate (DEM) suggests that glutathione-S-transferases are not an important factor in resistance to METIs.

Reciprocal crosses between susceptible females and resistant males showed no maternal effect, and resistance to METI-acaricides was inherited generally as a dominant trait. Backcrosses with F1 females revealed striking differences in the mode of inheritance. Although resistance to fenpyroximate and pyridaben was under monogenic control, resistance to tebufenpyrad was under control of more than one gene.

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buters, J.T.M., Schiller, C.D. & Chou, R.C. (1993) A highly sensitive tool for the assay of cytochrome P450 enzyme activity in rat, dog and man. Biochemical Pharmacology 46, 15771584.CrossRefGoogle ScholarPubMed
Bylemans, D. & Meurrens, F. (1997) Anti-resistance strategies for the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), in strawberry culture. Acta Horticulturae 439, 869876.CrossRefGoogle Scholar
Campos, F., Dybas, R.A. & Krupa, D.A. (1995) Susceptibility of twospotted spider mite (Acari: Tetranychidae) populations in California to abamectin. Journal of Economic Entomology 88, 225231.CrossRefGoogle Scholar
Cho, J.R., Kim, Y.J., Ahn, Y.J., Yoo, J.K. & Lee, J.O. (1995) Monitoring of acaricide resistance in field collected populations of Tetranychus urticae (Acari: Tetranychidae) in Korea. Korean Journal of Applied Entomology 31, 4045.Google Scholar
Cranham, J.E. & Helle, W. (1985) Pesticide resistance in Tetranychidae. pp. 405421in Helle, W. & Sabelis, M.W. (Eds) Spider Mites: Their Biology, Natural Enemies and Control, vol. 1B. Amsterdam, Elsevier.Google Scholar
DeLuca, J.G., Dysart, G.R., Rasnick, D. & Bradley, M.O. (1988) A direct, highly sensitive assay for cytochrome P-450 catalyzed O-deethylation using a novel coumarin analog. Biochemical Pharmacology 37, 17311739.CrossRefGoogle ScholarPubMed
Devine, G.J., Barber, M. & Denholm, I. (2001) Incidence and inheritance of resistance to METI-acaricides in European strains of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Management Science 57, 443448.CrossRefGoogle ScholarPubMed
Georghiou, G.P. (1969) Genetics of resistance to insecticides in house flies and mosquitoes. Experimental Parasitology 26, 224255.CrossRefGoogle Scholar
Goka, K. (1998) Mode of inheritance of resistance to three new acaricides in the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). Experimental and Applied Acarology 22, 699708.CrossRefGoogle Scholar
Goodwin, S., Herron, G.A., Gough, N., Wellham, T., Rophail, J. & Parker, R. (1995) Relationship between insecticide-acaricide resistance and field control in Tetranychus urticae (Acari: Tetranychidae) infesting roses. Journal of Economic Entomology 88, 11061112.CrossRefGoogle Scholar
Gunning, R.V., Moores, G.D. & Devonshire, A.L. (1998) Inhibition of resistance-related esterases by piperonyl butoxide in Helicoverpa armigera (Lepidoptera: Noctuidae) and Aphis gossypii (Hemiptera: Aphididae). pp. 215227in Jones, D.G. (Ed.) Piperonyl butoxide: The Insecticide Synergist. London, Academic Press.Google Scholar
Gunning, R.V., Moores, G.D. & Devonshire, A.L. (1999) Esterase inhibitors synergise the toxicity of pyrethroids in Australian Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology 63, 5062.CrossRefGoogle Scholar
Habig, W.H. & Jakoby, W.B. (1981) Glutathione S-transferases (rat and human), assays for differentiation of glutathione S-transferases. pp. 398405in Jakoby, W.B (Ed.) Methods in Enzymology, Detoxification and Drug Metabolism: Conjugation and Related Systems. New York, Academic Press.CrossRefGoogle Scholar
Herron, G.A., Edge, V.E. & Rophail, J. (1993) Clofentezine and hexythiazox resistance in Tetranychus urticae Koch in Australia. Experimental and Applied Acarology 17, 433440.CrossRefGoogle Scholar
Herron, G.A. & Rophail, J. (1998) Tebufenpyrad (Pyranica(R)) resistance detected in two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) from apples in western Australia. Experimental and Applied Acarology 22, 633641.CrossRefGoogle Scholar
Herron, G.A. & Rophail, J. (2003) First detection of chorfenapyr (Secure) resistance in two-spotted spider mite (Acari: Tetranychidae) from nectarines in an Australian orchard. Experimental and Applied Acarology 31, 131134.CrossRefGoogle Scholar
Herron, G.A., Edge, V.E., Wilson, L.J. & Rophail, J. (1998) Organophosphate resistance in spider mites (Acari: Tetranychidae) from cotton in Australia. Experimental and Applied Acarology 22, 1730.CrossRefGoogle Scholar
Herron, G.A., Rophail, J. & Wilson, L.J. (2001) The development of bifenthrin resistance in two-spotted spider mite (Acari: Tetranychidae) from Australian cotton. Experimental and Applied Acarology 25, 301310.CrossRefGoogle ScholarPubMed
Hollingworth, R.M. & Ahammadsahib, K.I. (1995) Inhibitors of respiratory complex I: mechanisms, pesticidal actions and toxicology. Reviews in Pesticide Toxicology 3, 277302.Google Scholar
Jeppson, L.R., Keifer, H.H. & Baker, E.W. (1975) Mites Injurious to Economic Plants. Berkeley, CA, University of California Press.CrossRefGoogle Scholar
Kim, Y.J., Lee, S.H., Lee, S.W. & Ahn, Y.J. (2004) Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms. Pest Management Science 60, 10011006.CrossRefGoogle ScholarPubMed
Kim, Y.J., Park, H.M., Cho, J.R. & Ahn, Y.J. (2006) Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology 99, 954958.CrossRefGoogle Scholar
Knowles, C.O. (1997) Mechanisms of resistance to acaricides. pp. 5777in Sjut, V. (Ed.) Molecular Mechanisms of Resistance to Agrochemicals, vol. 13. Berlin, Heidelberg, Springer.CrossRefGoogle Scholar
Lümmen, P. (1998) Complex I inhibitors as insecticides and acaricides. Biochimica et Biophysica Acta 1364, 287296.CrossRefGoogle ScholarPubMed
McKenzie, J.A. & Batterham, P. (1998) Predicting insecticide resistance: mutagenesis, selection and response. Philosophical Transactions of the Royal Society of London, Series B 353, 17291734.CrossRefGoogle ScholarPubMed
McKenzie, J.A., Dearn, J.M. & Whitten, M.J. (1980) Genetic basis of resistance to diazinon in Victorian populations of the Australian sheep blowfly, Lucilia cuprina. Australian Journal of Biological Sciences 33, 8595.CrossRefGoogle ScholarPubMed
Nauen, R. & Stumpf, N. (2002) Fluorometric method to measure glutathione S-transferase activity in insects and mites using monochlorobimane. Analytical Biochemistry 303, 194198.CrossRefGoogle ScholarPubMed
Nauen, R., Stumpf, N., Elbert, A., Zebitz, C.P.W. & Kraus, W. (2001) Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Management Science 57, 253261.CrossRefGoogle Scholar
Oppenoorth, F.J. (1984) Biochemistry of insecticide resistance. Pesticide Biochemistry and Physiology 22, 187193.CrossRefGoogle Scholar
Oppenoorth, F.J. (1985) Biochemistry and genetics of insecticide resistance. pp. 731773in Kerkut, G.A. & Gilbert, L.I. (Eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Insect Control. Oxford, Pergamon Press.Google Scholar
Ozawa, A. (1994) Acaricide susceptibility of Kanzawa spider mite, Tetranychus kanzawai Kishida (Acarina: Tetranychidae) collected from tea fields in Chuuen and Ogasa district in Shizuoka Prefecture. Bulletin of the Tea Research Station 79, 114 (in Japanese).Google Scholar
Robertson, J.L. & Preisler, H.K. (1992a) Binary response with one explanatory variable. pp. 1734in Robertson, J.L. & Preisler, H.K. (Eds) Pesticide Bioassays with Arthropods. New York, Chapman & Hall.Google Scholar
Robertson, J.L. & Preisler, H.K. (1992b) Binary response: design, fit, and other problems. pp. 3550in Robertson, J.L. & Preisler, H.K. (Eds) Pesticide Bioassays with Arthropods. New York, Chapman & Hall.Google Scholar
Roush, R.T. & McKenzie, J.A. (1987) Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology 32, 361380.CrossRefGoogle ScholarPubMed
Sato, M.E., Miyata, T., Da Silva, M., Raga, A. & De Souza Filho, M.F. (2004) Selections for fenpyroximate resistance and susceptibility, and inheritance, cross-resistance and stability of fenpyroximate resistance in Tetranychus urticae Koch (Acari: Tetranychidae). Applied Entomology and Zoology 39, 293302.CrossRefGoogle Scholar
Schuler, F. & Casida, J.E. (2001) The insecticide target in the PSST subunit of complex I. Pest Management Science 57, 932940.CrossRefGoogle ScholarPubMed
Scott, J.G. (1990) Investigating mechanisms of insecticide resistance: methods, strategies, and pitfalls. pp. 3957in Roush, R.T. & Tabashnik, B.E. (Eds) Pesticide Resistance in Arthropods. New York, Chapman & Hall.CrossRefGoogle Scholar
Stone, B.F. (1968) A formula for determining degree of dominance in cases of mono factorial inheritance of resistance to chemicals. Bulletin WHO 38, 325326.Google Scholar
Stumpf, N. & Nauen, R. (2001) Cross-resistance, inheritance and biochemistry of METI-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of Economical Entomololgy 94, 15771583.CrossRefGoogle Scholar
Stumpf, N. & Nauen, R. (2002) Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology 72, 111121.CrossRefGoogle Scholar
Stumpf, N., Zebitz, C.P.W., Kraus, W., Moores, G.D. & Nauen, R. (2001) Resistance to organophosphates and biochemical genotyping of acetylcholinesterases in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology 69, 131142.CrossRefGoogle Scholar
Unwin, B. (1971) Biology and control of the twospotted mite, Tetranychus urticae (Koch). Journal of the Australian Institute of Agricultural Science 37, 192211.Google Scholar
Valles, S.M., Koehler, P.G. & Brenner, R.J. (1997) Antagonism of fipronil toxicity by piperonyl butoxide and S,S,S-tributyl phosphorotrithioate in the German cockroach (Dictyoptera: Blattellidae). Journal of Economic Entomology 90, 12541258.CrossRefGoogle Scholar
Van de Vrie, M., McMurthy, J.A. & Huffaker, C.B. (1985) Control of Tetranychidae in crops: greenhouse ornamentals. pp. 261272in Helle, W. & Sabelis, M.W. (Eds) Spider Mites: Their Biology, Natural Enemies and Control, vol. 1B. Amsterdam, Elsevier.Google Scholar
Van Laecke, K. & Degheele, D. (1993) Effect of insecticide synergist combinations on the survival of Spodoptera exigua. Pesticide Science 37, 283288.CrossRefGoogle Scholar
Van Leeuwen, T. & Tirry, L. (2007) Esterase-mediated bifenthrin resistance in a multiresistant strain of the two-spotted spider mite, Tetranychus urticae. Pest Management Science 63, 150156.CrossRefGoogle Scholar
Van Leeuwen, T., Stillatus, V. & Tirry, L. (2004) Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology 32, 249261.CrossRefGoogle Scholar
Van Leeuwen, T., Van Pottelberge, S. & Tirry, L. (2005) Comparative acaricide susceptibility and detoxifying enzyme activity in a field collected resistant and susceptible strain of Tetranychus urticae. Pest Management Science 61, 499507.CrossRefGoogle Scholar
Walker, J.E. (1992) The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Quarterly Reviews of Biophysics 25, 253324.CrossRefGoogle ScholarPubMed
Young, S.J., Gunning, R.V. & Moores, G.D. (2005) The effect of piperonyl butoxide on pyrethroid-resistance-associated esterases in Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Pest Manaagement Science 61, 397401.CrossRefGoogle ScholarPubMed