Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T07:20:23.444Z Has data issue: false hasContentIssue false

Reproductive performance of asexual clones of the peach-potato aphid, (Myzus persicae, Homoptera: Aphididae), colonising Scotland in relation to host plant and field ecology

Published online by Cambridge University Press:  27 November 2009

B. Fenton*
Affiliation:
Scottish Crop Research Institute, Invergowrie, DundeeDD2 5DA, UK
L. Kasprowicz
Affiliation:
Scottish Crop Research Institute, Invergowrie, DundeeDD2 5DA, UK
G. Malloch
Affiliation:
Scottish Crop Research Institute, Invergowrie, DundeeDD2 5DA, UK
J. Pickup
Affiliation:
Scottish Agricultural Science Agency, 1 Roddinglaw Road, EdinburghEH12 9FJ, UK
*
*Author for correspondence Fax: +44 (0)1382 562426 E-mail: [email protected]

Abstract

The population of peach-potato aphid, Myzus persicae (Sulzer), in Scotland comprises large numbers of a few superclones with much smaller numbers of other clones, and the reason for their differential success has yet to be elucidated. In the current study, the reproduction of lineages derived from these clones was measured by counting the numbers of offspring produced by a one-day-old nymph after 15 days. This was measured on four plant species, including local agricultural hosts and at two different temperatures (14 and 18°C). There were significant differences in clonal lineage reproduction on different hosts and at different temperatures and amongst clonal lineages on the same hosts at the same temperature. Lineages of local insecticide sensitive clones did not have the best reproductive potential; instead, a recently introduced clonal lineage carrying MACE insecticide resistance was the best reproducer. The clonal lineage with the lowest reproductive potential also carried insecticide resistance, but this was kdr. A lineage from a local insecticide-sensitive clone was the least affected by reduced temperature. There was evidence of host plant specialisation in some of the clonal lineages.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anstead, J.A., Mallet, J. & Denholm, I. (2007) Temporal and spatial incidence of alleles conferring knockdown resistance to pyrethroids in the peach–potato aphid, Myzus persicae (Hemiptera: Aphididae), and their association with other insecticide resistance mechanisms. Bulletin of Entomological Research 97, 243252.CrossRefGoogle ScholarPubMed
Blackman, R.L. (1987) Morphological discrimination of a tobacco-feeding form from Myzus persicae (Sulzer) (Hemiptera: Aphididae), and a key to New World Myzus (Nectarosiphon) species. Bulletin of Entomological Research 77, 713730.CrossRefGoogle Scholar
Blackman, R.L. (1990) Specificity in aphid/plant genetic interactions, with particular attention to the role of the alate coloniser. In Campbell, R.K. & Eikenbary, R.D. (Eds) Aphid-Plant Genotype Interactions (pp. 251274). Amsterdam: Elsevier.Google Scholar
Blackman, R.L. & Eastop, V.F. (1984) Aphids on the world's crops: an identification and information guide. Wiley: Chichester.Google Scholar
Blackman, R.L. & Spence, J.M. (1992) Electrophoretic distinction between the peach–potato aphid, Myzus persicae, and the tobacco aphid, M. nicotianae (Homoptera: Aphididae). Bulletin of Entomological Research 82, 161165.CrossRefGoogle Scholar
Blackman, R.L., Malarky, G., Margaritopoulos, J.T. & Tsitsipis, J.A. (2007) Distribution of common genotypes of Myzus persicae (Hemiptera: Aphididae) in Greece, in relation to life cycle and host plant. Bulletin of Entomological Research 97, 253263.CrossRefGoogle ScholarPubMed
Caillaud, C.M., Dedryver, C.A., Di Pietro, J.P., Simon, J.-C., Fima, F. & Chaubet, B. (1995) Clonal variability in the response of Sitobion avenae (Homoptera: Aphididae) to resistant and susceptible wheat. Bulletin of Entomological Research 85, 189195.CrossRefGoogle Scholar
Chen, D.Q. & Purcell, A.H. (1997) Occurrence and transmission of facultative endosymbionts in aphids. Current Microbiology 34, 220225.CrossRefGoogle ScholarPubMed
De Barro, P., Sherratt, T.N., David, O. & Maclean, N. (1995) An investigation of the differential performance of clones of the aphid Sitobion avenae on two host species. Oecologia 104, 379385.CrossRefGoogle ScholarPubMed
Despres, L., David, J.-P. & Gallet, C. (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology and Evolution 6, 298307.CrossRefGoogle Scholar
Edwards, O.R. (2001) Interspecific and intraspecific variation in the performance of three pest aphid species on five grain legume hosts. Entomologia experimentalis et applicata 100, 2130.CrossRefGoogle Scholar
Eggers-Schumacher, H.A. (1983) A comparison of the reproductive performance of insecticide-resistant and susceptible clones of Myzus persicae. Entomologia experimentalis et applicata 34, 301307.CrossRefGoogle Scholar
Fenton, B., Woodford, J.A.T. & Malloch, G. (1998) Analysis of clonal diversity of the peach–potato aphid, Myzus persicae (Sulzer), in Scotland, UK and evidence for the existence of a predominant clone. Molecular Ecology 7, 14751487.CrossRefGoogle ScholarPubMed
Fenton, B., Malloch, G., Woodford, J.A.T., Foster, S.P., Anstead, J., Denholm, I., King, L. & Pickup, J. (2005) The attack of the clones: tracking movement of insecticide-resistant peach–potato aphids Myzus persicae (Hemiptera: Aphididae). Bulletin of Entomological Research 95, 483494.CrossRefGoogle ScholarPubMed
Figueroa, C.C., Simon, J.-C., Le Gallic, J.-F., Prunier-Leterme, N., Briones, L.M., Dedryver, C.A. & Niemeyer, H.M. (2004) Effect of host defence chemicals on clonal distribution and performance of different genotypes of the cereal aphid Sitobion avenae. Journal of Chemical Ecology 30, 25152525.CrossRefGoogle ScholarPubMed
Foster, S.P., Harrington, R., Devonshire, A.L., Denholm, I., Devine, G.J. & Kenward, M.G. (1996) Comparative survival of insecticide-susceptible and resistant peach–potato aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), in low temperature field trials. Bulletin of Entomological Research 86, 1727.CrossRefGoogle Scholar
Foster, S.P., Harrington, R., Devonshire, A.L., Denholm, I., Clark, S.J. & Mugglestone, M.A. (1997) Evidence for a possible fitness trade-off between insecticide resistance and the low temperature movement that is essential for survival of UK populations of Myzus persicae (Hemiptera: Aphididae). Bulletin of Entomological Research 87, 573579.CrossRefGoogle Scholar
Foster, S.P., Woodcock, C.M., Williamson, M.S., Devonshire, A.L., Denholm, I. & Thompson, R. (1999) Reduced alarm response by peach–potato aphids, Myzus persicae (Hemiptera: Aphididae), with knock-down resistance to insecticides (kdr) may impose a fitness cost through increased vulnerability to natural enemies. Bulletin of Entomological Research 89, 133138.CrossRefGoogle Scholar
Foster, S.P., Denholm, I. & Devonshire, A.L. (2000) The ups and downs of insecticide resistance in peach–potato aphids (Myzus persicae) in the UK. Crop Protection 19, 873879.CrossRefGoogle Scholar
Foster, S.P., Kift, N.B., Baverstock, J., Sime, S., Reynolds, K., Jones, J.E., Thompson, R. & Tatchell, G.M. (2003) Association of MACE-based insecticide resistance in Myzus persicae with reproductive rate, response to alarm pheromone and vulnerability to attack by Aphidius colemani. Pest Management Science 59, 11691178.CrossRefGoogle ScholarPubMed
Foster, S.P., Denholm, I., Thompson, R., Poppy, G.M. & Powell, W. (2005) Reduced response of insecticide-resistant aphids and attraction of parasitoids to aphid alarm pheromone; a potential fitness trade-off. Bulletin of Entomological Research 95, 3746.CrossRefGoogle ScholarPubMed
Fragoyiannis, D.A., McKinlay, R.G. & D'Mello, J.P.F. (1998) Studies of the growth, development and reproductive performance of the aphid Myzus persicae on artificial diets containing potato glycoalkaloids. Entomologia experimentalis et applicata 88, 5966.CrossRefGoogle Scholar
Francis, F., Vanhaelen, N. & Haubruge, E. (2005) Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Archive of Insect Biochemistry & Physiology 58, 166174.CrossRefGoogle ScholarPubMed
Gladders, D.W. & Peters, D. (1986) The effect of previous host plant on the fecundity of Myzus persicae and its ability to transmit beet yellows virus. Annals of Applied Biology 109, 499507.CrossRefGoogle Scholar
Guillemaud, T., Mieuzet, L. & Simon, J.-C. (2003) Spatial and temporal genetic variability in French populations of the peach–potato aphid, Myzus persicae. Heredity 91, 143152.CrossRefGoogle ScholarPubMed
Hawthorne, D.J. & Via, S. (2001) Genetic linkage of ecological specialisation and reproductive isolation in pea aphids. Nature 412, 904907.CrossRefGoogle ScholarPubMed
Kasprowicz, L., Malloch, G., Foster, S., Pickup, J., Zhan, J. & Fenton, B. (2008a) Clonal turnover of MACE-carrying peach–potato aphids (Myzus persicae (Sulzer), Homoptera: Aphididae) colonizing Scotland. Bulletin of Entomological Research 98, 115124.CrossRefGoogle ScholarPubMed
Kasprowicz, L., Malloch, G., Pickup, J. & Fenton, B. (2008b) Spatial and temporal dynamics of Myzus persicae clones in fields and suction traps. Agricultural and Forest Entomology 10, 91–100.CrossRefGoogle Scholar
Leonardo, T.E. & Muiru, G.T. (2003) Facultative symbionts are associated with host plant specialisation in pea aphid populations. Proceedings of the Royal Society of London Series B (supplement) 270, S209S212.Google ScholarPubMed
Liu, S. & Meng, X. (1999) Modelling developmental time of Myzus persicae (Hemiptera: Aphididae) at constant and natural temperatures. Bulletin of Entomological Research 89, 5363.CrossRefGoogle Scholar
Loxdale, H. & Lushai, G. (2003) Rapid changes in clonal lineages: the death of a ‘sacred cow’. Biological Journal of the Linnean Society 79, 3–16.CrossRefGoogle Scholar
Lynch, M. (1984) Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Quarterly Review of Biology 59, 257290.CrossRefGoogle Scholar
Malloch, G., Highet, F., Kasprowicz, L., Pickup, J., Neilson, R. & Fenton, B. (2006) Microsatellite marker analysis of peach–potato aphids (Myzus persicae, Homoptera: Aphididae) from Scottish suction traps. Bulletin of Entomological Research 96, 573582.CrossRefGoogle ScholarPubMed
Margaritopoulos, J.T., Mamuris, Z. & Tsitsipis, J.A. (1998) Attempted discrimination of Myzus persicae and Myzus nicotianae (Homoptera: Aphididae) by random amplified polymorphic DNA polymerase chain reaction technique. Annals of the Entomological Society of America 91, 602607.CrossRefGoogle Scholar
Margaritopoulos, J.T., Malarky, G., Tsitsipis, J.T. & Blackman, R.L. (2007) Microsatellite DNA and behavioural studies provide evidence of host-mediated speciation in Myzus persicae (Hemiptera: Aphididae). Biological Journal of the Linnean Society 91, 687702.CrossRefGoogle Scholar
Margaritopoulos, J.T., Kasprowicz, L., Malloch, G.L. & Fenton, B. (2009) Tracking the global dispersal of a cosmopolitan insect pest, the peach-potato aphid. BMC Ecology 9, 13.CrossRefGoogle ScholarPubMed
Nikolakakis, N.N., Margaritopoulos, J.T. & Tsitsipis, J.A. (2003) Performance of Myzus persicae (Hemiptera: Aphididae) clones on different host-plants and their host preference. Bulletin of Entomological Research 93, 235242.CrossRefGoogle ScholarPubMed
Ruiz-Montoya, L., Núñez-Farfan, J. & Vargas, J. (2003) Host-associated genetic structure of Mexican populations of the cabbage aphid Brevicoryne brassicae L. (Homoptera: Aphididae). Heredity 91, 415421.CrossRefGoogle ScholarPubMed
Russell, J.A., Latorre, A., Sabater-Muñoz, B., Moya, A. & Moran, N.A. (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Molecular Ecology 12, 10611075.CrossRefGoogle ScholarPubMed
Shufran, K.A., Burd, J.D., Anstead, J.A. & Lushai, G. (2000) Mitochondrial DNA sequence divergence among greenbug (Homoptera: Aphididae) biotypes: evidence for host-adapted races. Insect Molecular Biology 9, 179184.CrossRefGoogle ScholarPubMed
Via, S. (1991) Specialized host plant performance of pea aphid clones is not altered by experience. Evolution 72, 14201427.Google Scholar
von Burg, S., Ferrari, J., Muller, C.B. & Vorburger, C. (2008) Genetic variation and covariation of susceptibility to parasitoids in the aphid Myzus persicae: no evidence for trade-offs. Proceedings of the Royal Society, Series B 275, 10891094.Google ScholarPubMed
Vorburger, C. (2004) Cold tolerance in obligate and cyclical parthenogens of the peach–potato aphid, Myzus persicae. Ecological Entomology 29, 498505.CrossRefGoogle Scholar
Vorburger, C. (2005) Positive genetic correlations among major life-history traits related to ecological success in the aphid Myzus persicae. Evolution 59, 10061015.Google ScholarPubMed
Vorburger, C., Lancaster, M. & Sunnucks, P. (2003a) Environmentally related patterns of reproductive modes in the aphid Myzus persicae and the predominance of two ‘superclones’ in Victoria, Australia. Molecular Ecology 12, 34933504.CrossRefGoogle ScholarPubMed
Vorburger, C., Sunnucks, P. & Ward, S.A. (2003b) Explaining the coexistence of asexuals with their sexual progenitors: no evidence for general-purpose genotypes in obligate parthenogens of the peach–potato aphid, Myzus persicae. Ecology Letters 6, 10911098.CrossRefGoogle Scholar
Weber, G. (1985) Genetic variability in the host plant adaptation of the green peach aphid, Myzus persicae. Entomologia experimentalis et applicata 38, 4956.CrossRefGoogle Scholar
Weber, G. (1986) Ecological genetics of host plant exploitation in the green peach aphid, Myzus persicae. Entomologia experimentalis et applicata 40, 161168.CrossRefGoogle Scholar
Williams, I.S., Dewar, A.M., Dixon, A.F.G. & Thornhill, W.A. (2000) Alate production by aphids on sugar beet: how likely is the evolution of sugar beet-specific biotypes? Journal of Applied Ecology 37, 4051.CrossRefGoogle Scholar