Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T04:47:03.172Z Has data issue: false hasContentIssue false

Relationship to human biting collections and influence of light and bednet in CDC light-trap catches of West African malaria vectors

Published online by Cambridge University Press:  10 July 2009

C. Costantini*
Affiliation:
Institute of Parasitology, WHO Collaborating Centre, University of Rome ‘La Sapienza’, P. le Aldo Moro 5, 00185 Rome, Italy Department of Biology, Imperial College of Science, Technology and Medicine, London, UK
N.F. Sagnon
Affiliation:
Centre National de Lutte contre le Paludisme, Ouagadougou, Burkina Faso
E. Sanogo
Affiliation:
Centre National de Lutte contre le Paludisme, Ouagadougou, Burkina Faso
L. Merzagora
Affiliation:
Institute of Parasitology, WHO Collaborating Centre, University of Rome ‘La Sapienza’, P. le Aldo Moro 5, 00185 Rome, Italy
M. Coluzzi
Affiliation:
Institute of Parasitology, WHO Collaborating Centre, University of Rome ‘La Sapienza’, P. le Aldo Moro 5, 00185 Rome, Italy
*
*Centre National de Lutte contre le Paludisme, 01 B.P. 2208 – Ouagadougou 01, Burkina Faso. +226 31 04 77[email protected]

Abstract

The efficiency of miniature CDC light-traps in catching West African malaria vectors was evaluated during two rainy seasons in a village near Ouagadougou, Burkina Faso. Traps were employed both indoors and outdoors using human baits protected by an insecticide-free mosquito-net and different sources of light. Indoors, light from incandescent bulbs increased the catch of Anopheles gambiae s.l. (mainly A. arabiensis Patton and the Mopti chromosomal form of A. gambiae s.s. Giles) and A. funestus Giles c. 2.5 times as compared to traps whose light bulb was removed. Conversely, the difference was not significant when a UV ‘Blacklight-blue’ fluorescent tube was compared to the incandescent bulb. Protecting the bait with a mosquito-net increased the catch c. 3 times for A. gambiae s.l. and c. 3.5 times for A. funestus. A prototype model of double bednet gave intermediate yields. Outdoors, the addition of incandescent bulbs to unlighted traps did not significantly increase the number of vectors caught, but the addition of the mosquito-net to the unprotected human bait did so by c. 1.5–4 times. Thus, the CDC light-trap hung close to a human sleeping under a bednet and fitted with an incandescent bulb, was considered the most practical and efficient in terms of numbers of vectors caught, consequently its indoor efficiency was compared to human landing catches on single collectors and estimated to be 1.08 times and density-independent. Outdoor light-trap catches were either not significantly correlated to biting collections (as for A. gambiae s.l.), or density-dependent in their efficiency (as for A. funestus); thus, they were not considered a reliable means for estimating malaria vector outdoor biting densities in this area. No difference was found in the parous rate of A. gambiae s.l. samples obtained with CDC light-traps and human landing collections.

Type
Review Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barr, A.R., Smith, T.A. & Boreham, M.M. (1960) Light intensity and the attraction of mosquitoes to light traps. Journal of Economic Entomology 53, 876880.CrossRefGoogle Scholar
Barr, A.R., Smith, T.A., Boreham, M.M. & White, K.E. (1963) Evaluation of some factors affecting the efficiency of light traps in collecting mosquitoes. Journal of Economic Entomology 56, 123127.CrossRefGoogle Scholar
Boccolini, D., Sabatini, A., Sanogo, E., Sagnon, N.F., Coluzzi, M. & Costantini, C. (1994) Chromosomal and vectorial heterogeneities in Anopheles funestus from Burkina Faso, West Africa. Parassitologia 36, 20.Google Scholar
Carestia, R.R. & Horner, K.O. (1968) Analysis of comparative effects of selected CO2 flow rates on mosquitoes using CDC light traps. Mosquito News 28, 408411.Google Scholar
Carestia, R.R. & Savage, L.B. (1967) Effectiveness of carbon dioxide as a mosquito attractant in the CDC miniature light trap. Mosquito News 27, 9092.Google Scholar
Carnevale, P. & Le Pont, F. (1973) Epidemiologie du paludisme humain en République populaire du Congo. II. Utilisation des pièges lumineux ‘C.D.C.’ comme moyen d'échantillon-age des populations anopheliènnes. Cahiers ORSTOM.Série Entomologie Médicale et Parasitologie 11, 263273.Google Scholar
Chandler, J.A., Highton, R.B. & Hill, M.N. (1975) Mosquitoes of the Kano plain, Kenya. I. Results of indoor collections in irrigated and nonirrigated areas using human bait and light traps. Journal of Medical Entomology 12, 504510.CrossRefGoogle ScholarPubMed
Coluzzi, M. & Petrarca, V. (1973) Aspirator with paper cup for collecting mosquitoes and other insects. Mosquito News 33, 249250.Google Scholar
Coluzzi, M., Sabatini, A., Petrarca, V. & Di Deco, M.A. (1977) Behavioural divergences between mosquitoes with different inversion karyotypes in polymorphic populations of the Anopheles gambiae complex. Nature 266, 832833.CrossRefGoogle ScholarPubMed
Coluzzi, M., Sabatini, A., Petrarca, V. & Di Deco, M.A. (1979) Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Transactions of the Royal Society of Tropical Medicine and Hygiene 73, 483497.CrossRefGoogle ScholarPubMed
Coluzzi, M., Petrarca, V. & Di Deco, M.A. (1985) Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae. Bollettino di Zoologia 52, 4563.CrossRefGoogle Scholar
Costantini, C. (1996) Behavioural studies on West African malaria vectors in the field. PhD thesis, 228 pp. Imperial College of Science Technology and Medicine, University of London.Google Scholar
Costantini, C., Gibson, G., Sagnon, N.F., della Torre, A., Brady, J. & Coluzzi, M. (1996) Mosquito responses to carbon dioxide in a West African Sudan savanna village. Medical and Veterinary Entomology 10, 220227.CrossRefGoogle Scholar
Coz, J., Hamon, J., Vervent, G. & Sales, S. (1971) Contribution à l'étude du piège lumineux ‘CDC miniature light trap’ comme moyen d'échantillonage des populations anopheliènnes dans le Sud-Ouest de la Haute Volta. Cahiers ORSTOM.Série Entomologie Médicale et Parasitologie 9, 417.Google Scholar
Crawley, M.J. (1993) GLIM for ecologists. 379 pp. Oxford, Blackwell Scientific Publications.Google Scholar
Davis, J.R., Hall, T., Chee, E.M., Majala, A., Minjas, J. & Shiff, C.J. (1995) Comparison of sampling anopheline mosquitoes by light trap and human bait collections indoors at Bagamoyo, Tanzania. Medical and Veterinary Entomology 9, 249255.CrossRefGoogle ScholarPubMed
Detinova, T.S. (1962) Age grouping methods in Diptera of medical importance. 216 pp. Geneva, World Health Organization.Google ScholarPubMed
Faye, O., Diallo, S., Gaye, O., Ndir, O. & Faye, O. (1992) Efficacité comparée de l'utilisation des pièges lumineux du type CDC et des sujets humains pour l'échantillonnage des populations anophéliennes. Résultats obtenus dans la zone de Bignona (Sénégal). Bulletin de la Societé de Pathologie Exotique 85, 185189.Google ScholarPubMed
Fontenille, D. & Rakotoarivony, I. (1988) Reapperance of Anopheles funestus as a malaria vector in the Antananarivo region, Madagascar. Transactions of the Royal Society of Tropical Medicine and Hygiene 82, 644645.CrossRefGoogle Scholar
Garrett-Jones, C. & Magayuka, S.A. (1975) Studies on the natural incidence of Plasmodium and Wuchereria infections in Anopheles in rural East Africa: I – Assessment of densities by trapping hungry female Anopheles gambiae Giles Species A. Unpublished document WHO/MAL/75.851, WHO/VBC/75.541. Geneva,World Health Organization.Google Scholar
Gibson, G. (1995) A behavioural test of the sensitivity of a nocturnal mosquito, Anopheles gambiae, to dim white, red and infra-red light. Physiological Entomology 20, 224228.CrossRefGoogle Scholar
Githeko, A.K., Service, M.W., Mbogo, C.M., Atieli, F.A. & Juma, F.O. (1994) Sampling Anopheles arabiensis, A. gambiae sensu lato and A. funestus (Diptera: Culicidae) with CDC light-traps near a rice irrigation area and a sugarcane belt in western Kenya. Bulletin of Entomological Research 84, 319324.CrossRefGoogle Scholar
Kline, D.L., Takken, W., Wood, J.R. & Carlson, D.A. (1990) Field studies on the potential of butanone, carbon dioxide, honey extract, 1-octen-3-ol, L-lactic acid and phenols as attractants for mosquitoes. Medical and Veterinary Entomology 4, 383391.CrossRefGoogle ScholarPubMed
Le Goff, G., Carnevale, P. & Robert, V. (1993) Comparaison des captures sur homme et au piège lumineux CDC pour l'échantillonnage des moustiques et l'évaluation de la transmission du paludisme au Sud-Cameroun. Annales de la Société Belge de Médicine Tropicale 73, 5560.Google Scholar
Lines, J.D., Curtis, C.F., Wilkes, T.J. & Njunwa, K.J. (1991) Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light-traps hung beside mosquito nets. Bulletin of Entomological Research 81, 7784.CrossRefGoogle Scholar
Lison, L. (1961) Statistica applicata alla biologia sperimentale. 381 pp. Milano, Casa Editrice Ambrosiana.Google Scholar
Mbogo, C.N.M., Glass, G.E., Forster, D., Kabiru, E.W., Githure, J.I., Ouma, J.H. & Beier, J.C. (1993) Evaluation of light traps for sampling anopheline mosquitoes in Kilifi, Kenya. Journal of the American Mosquito Control Association 9, 260263.Google ScholarPubMed
Merzagora, L. (1993) Variazioni ecologiche ed epidemiologia della malaria in una zona di savana sudanese presso Ouagadougou, Burkina Faso. PhD thesis, 74 pp. Università ‘La Sapienza’, Rome.Google Scholar
Muir, L.E., Thorne, M.J. & Kay, B.H. (1992) Aedes aegypti (Diptera, Culicidae) vision: spectral sensitivity and other perceptual parameters of the female eye. Journal of Medical Entomology 29, 278281.CrossRefGoogle ScholarPubMed
Mukiama, T.K. & Mwangi, R.W. (1990) Population and cytogenetic observations on Anopheles arabiensis Patton of Mwea irrigation scheme, Kenya. Insect Science and its Application 11, 119131.Google Scholar
Odetoyinbo, J.A. (1969) Preliminary investigation on the use of a light-trap for sampling malaria vectors in the Gambia. Bulletin of the World Health Organization 40, 547560.Google ScholarPubMed
Payne, C.D. (Ed.) (1987) The GLIM system release 3.77 manual. 2nd edn.305 pp. Oxford, Numerical Algorithms Group Ltd.Google Scholar
Ralisoa Randrianasolo, O. & Coluzzi, M. (1987) Genetical investigations on zoophilic and exophilic Anopheles arabiensis from Antananarivo area (Madagascar). Parassitologia 29, 9397.Google ScholarPubMed
Rubio-Palis, Y. & Curtis, C.F. (1992) Evaluation of different methods of catching anopheline mosquitoes in western Venezuela. Journal of the American Mosquito Control Association 8, 261267.Google ScholarPubMed
Service, M.W. (1970) A battery-operated light-trap for sampling mosquito populations. Bulletin of the World Health Organization 43, 635641.Google ScholarPubMed
Service, M.W. (1993) Mosquito ecology. field sampling methods. 2nd edn.988 pp. London, Elsevier Applied Science Publishers Ltd.Google Scholar
Sexton, J.D., Hobbs, J.H., StJean, Y. & Jacques, J.R. (1986) Comparison of an experimental updraft ultraviolet light trap with the CDC miniature light trap and biting collections in sampling for Anopheles albimanus in Haiti. Journal of the American Mosquito Control Association 2, 168173.Google ScholarPubMed
Sokal, R.R. & Rohlf, J.F. (1981) Biometry. 2nd edn.859 pp. New York, W.H. Freeman & Co.Google Scholar
Stryker, R.G. & Young, W.W. (1970) Effectiveness of carbon dioxide and L (+) lactic acid in mosquito light traps with and without light. Mosquito News 30, 388393.Google Scholar
Sudia, W.D. & Chamberlain, R.W. (1962) Battery-operated light trap, an improved model. Mosquito News 22, 126129.Google Scholar
Takken, W. & Kline, D.L. (1989) Carbon dioxide and 1-octen-3-ol as mosquito attractants. Journal of the American Mosquito Control Association 5, 311316.Google ScholarPubMed
Wilton, D.P. (1975a) Field evaluations of three types of light traps for collection of Anopheles albimanus Wiedeman (Diptera: Culicidae). Journal of Medical Entomology 12, 382386.CrossRefGoogle ScholarPubMed
Wilton, D.P. (1975b) Mosquito collections in El Salvador with ultra-violet and CDC miniature light traps with and without dry ice. Mosquito News 35, 522525.Google Scholar
Wilton, D.P. & Fay, R.W. (1972a) Air flow direction and velocity in light trap design. Entomologia Experimentalis et Applicata 15, 377386.CrossRefGoogle Scholar
Wilton, D.P. & Fay, R.W. (1972b) Responses of adult Anopheles stephensi to light of various wavelengths. Journal of Medical Entomology 9, 301304CrossRefGoogle ScholarPubMed