Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T04:52:00.130Z Has data issue: false hasContentIssue false

Relationship between pest grasshopper densities and climate variables in the southern Pampas of Argentina

Published online by Cambridge University Press:  31 January 2022

Y. Mariottini*
Affiliation:
Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable (UNICEN-CICPBA), Arroyo seco S/N Campus Universitario, 7000, Tandil, Argentina
C. Marinelli
Affiliation:
Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable (UNICEN-CICPBA), Arroyo seco S/N Campus Universitario, 7000, Tandil, Argentina
R. Cepeda
Affiliation:
Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable (UNICEN-CICPBA), Arroyo seco S/N Campus Universitario, 7000, Tandil, Argentina
M. L. De Wysiecki
Affiliation:
Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), Boulevard 120 entre 60 y 64, 1900, La Plata, Argentina Facultad de Ciencias Naturales y Museo (UNLP), Av. 122 y 60, 1900, La Plata, Argentina
C. E. Lange
Affiliation:
Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), Boulevard 120 entre 60 y 64, 1900, La Plata, Argentina Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), 526 entre 10 y 11, 1900, La Plata, Argentina
*
Author for correspondence: Y. Mariottini, Email: [email protected]

Abstract

Grasshoppers are one of the most predominant insects in the grasslands of the southern Pampas. In this region, Dichroplus elongatus, Dichroplus maculipennis, Dichroplus pratensis and Borellia bruneri are the most abundant species and have the greatest economic importance. This study aimed to assess the relationship between temporal changes in the density of these species and climate variables associated with temperature and rainfall over an 11-year study period., We monitored 22 sites in different areas of Laprida county from 2005 to 2016. A total of 25 grasshopper species were collected. The most abundant species were D. maculipennis and B. bruneri which reached the highest densities from 2008–2009 to 2010–2011. The rainfall accumulated from September (RAS) to the sampling date and the number of rainy days (RD) largely explained the density variation of B. bruneri. Besides RD and RAS, winter rainfall, rainfall accumulated from October to the sampling date, and thermal amplitude of October (TAO) influenced the density of D. maculipennis. Our results indicated that seasons with less rainfall and fewer RD favored these two species’ abundance. We identified that the RD and TAO contributed significantly to variations in the density of D. elongatus. In contrast to the other two species, we recorded D. elongatus in seasons with high rainfall and high RD. A better understanding of the climate influence on the life cycle of these economically important insects may identify key factors in their population dynamics which in turn may improve management options.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, PB and Levine, JM (2007) Contrasting relationships between precipitation and species richness in space and time. Oikos 116, 221232.10.1111/j.0030-1299.2007.15327.xCrossRefGoogle Scholar
Aliaga, VS, Ferrelli, F and Piccolo, MC (2017) Regionalization of climate over the Argentine Pampas. International Journal of Climatology 37, 12371247.10.1002/joc.5079CrossRefGoogle Scholar
Baldi, G and Paruelo, JM (2008) Land use and land cover dynamics in South American temperate grasslands. Ecology and Society 13, 6.10.5751/ES-02481-130206CrossRefGoogle Scholar
Bale, JS, Masters, GJ, Hodkinson, ID, Awmack, C, Bezemer, TM and Brown, VK (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8, 116.10.1046/j.1365-2486.2002.00451.xCrossRefGoogle Scholar
Bardi, C (2013) Biología y biocontrol de Dichroplus elongatus Giglio-Tos (Orthoptera: Acrididae: Melanoplinae), acridio plaga del agro en Argentina (Tesis doctoral). La Plata, Argentina: Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata.Google Scholar
Barnett, KL and Facey, SL (2016) Grasslands, invertebrates, and precipitation: a review of the effects of climate change. Frontiers in Plant Science 7, 1196.CrossRefGoogle ScholarPubMed
Batista, WB, León, RJC and Perelman, SB (1988) Las comunidades vegetales de un pastizal natural de la región de Laprida, Prov. de Buenos Aires, Argentina. Phytoeconología 16, 519534.Google Scholar
Batista, WB, Taboada, MA, Lavado, RS, Perelman, SB and León, RJC (2005) Asociación entre comunidades vegetales y suelos en el pastizal de la Pampa Deprimida. In Oesterheld, M, Aguiar, MR, Ghersa, CM and Paruelo, JM (eds), La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando León. Buenos Aires: Editorial Facultad de Agronomía, pp. 113129.Google Scholar
Behmer, ST and Joern, A (2008) Coexisting generalist herbivores occupy unique nutritional feeding niches. Proceedings of the National Academy of Sciences USA 105, 19771982.10.1073/pnas.0711870105CrossRefGoogle ScholarPubMed
Behmer, ST and Joern, A (2012) Insect herbivore outbreaks viewed through a physiological framework: insights from Orthoptera. In Barbosa, P, Letourneau, DK and Agrawal, AA (eds), Insect Outbreaks Revisited. Oxford, UK: Wiley-Blackwell Publishing, pp. 329.Google Scholar
Belovsky, GE and Joern, A (1995) The dominance of different regulating mechanisms for rangeland grasshoppers. In Cappuccino, N and Price, PW (eds), Population Dynamics: New Approaches and Synthesis. San Diego: Academic Press, pp. 359386.CrossRefGoogle Scholar
Belovsky, GE and Slade, JB (2000) Insect herbivory accelerates nutrient cycling and increases plant production. Proceedings of the National Academy of Sciences 97, 1441214417.10.1073/pnas.250483797CrossRefGoogle ScholarPubMed
Bernays, EA (1998) Evolution of feeding behavior in insect herbivores. BioScience 48, 3544.10.2307/1313226CrossRefGoogle Scholar
Bilenca, D, Codesido, C, Fischer, C, Pérez Carush, P, Zufiaurre, E and Abba, A (2012) Impactos de la transformación agropecuaria sobre la biodiversidad en la provincia de Buenos Aires. Revista del Museo Argentino de Ciencias Naturales 14, 189198.CrossRefGoogle Scholar
Bohn, VY, Cintia Piccolo, M and Perillo, GM (2011) Análisis de los períodos secos y húmedos en el sudoeste de la provincia de Buenos Aires (Argentina). Revista de Climatología 11, 3143.Google Scholar
Branson, DH, Joern, A and Sword, GA (2006) Sustainable management of insect herbivores in grassland ecosystems: new perspectives in grasshopper control. Bioscience 56, 743755.10.1641/0006-3568(2006)56[743:SMOIHI]2.0.CO;2CrossRefGoogle Scholar
Brodbeck, B and Strong, D (1987) Amino acid nutrition of herbivorous insects and stress to host plants. In Barbosa, P and Schultz, J (eds), Insect Outbreaks. San Diego: Academic Press, pp. 347364.10.1016/B978-0-12-078148-5.50018-XCrossRefGoogle Scholar
Carbonell, CS (1995) Revision of the tribe Scyllinini, nov. (Acrididae: Gomphocerinae), with descriptions of new genera and species. Transactions of the American Entomological Society 121, 87152.Google Scholar
Carbonell, CS, Cigliano, MM and Lange, CE (2017) Acridomorph (Orthoptera) species of Argentina and Uruguay. La Plata, Argentina. http://163.10.203.2/ACRIDOMORPH/.Google Scholar
Chaneton, EJ (2005) Factores que determinan la heterogeneidad de la comunidad vegetal en diferentes escalas espaciales. In Oesterheld, M, Aguiar, MR, Ghersa, CM and Paruelo, JM (eds), La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando León. Buenos Aires: Editorial Facultad de Agronomía, pp. 1942.Google Scholar
Chen, Y (1999) The Locust and Grasshopper Pests of China. Beijing, China: China Forestry Publishing House, 72pp.Google Scholar
Cigliano, MM, De Wysiecki, ML and Lange, CE (1995) Disminución de la abundancia de Dichroplus maculipennis en comunidades del sudoeste de la provincia de Buenos Aires. Revista de la Sociedad Argentina de Entomología 54, 4142.Google Scholar
Cigliano, MM, De Wysiecki, ML and Lange, CE (2000) Grasshopper (Orthoptera, Acrididae) species diversity in the pampas, Argentina. Diversity and Distribution 6, 8191.CrossRefGoogle Scholar
Cigliano, MM, Torrusio, S and De Wysiecki, ML (2002) Grasshopper (Orthoptera: Acridoidea) community composition and temporal variation in The Pampas, Argentina. Journal of Orthoptera Research 11, 215221.CrossRefGoogle Scholar
COPR (Centre for Overseas Pest Research) (1982) The Locust and Grasshopper Agricultural Manual. London: COPR, p. 690.Google Scholar
Daguerre, JB (1940) Observaciones biológicas sobre Dichroplus arrogans (Stål). Revista de la Sociedad Entomológica Argentina 10, 341346.Google Scholar
De Miguel, L, Lorier, E and Zerbino, S (2014) Caracteización y descripción de los estadiosninfales de Borellia bruneri (Rhen, 1906) (Orthoptera: Gomphocerinae). Agrociencia 18, 7281.Google Scholar
De Wysiecki, ML and Sánchez, N (1992) Dieta y Remoción de forraje de Dichroplus pratensis (Orthoptera, Acrididae) en un pastizal de la provincia de La Pampa, Argentina. Ecología Austral 2, 1927.Google Scholar
De Wysiecki, ML, Sánchez, N and Ricci, S (2000) Grassland and shrubland grasshopper community composition in northern La Pampa province, Argentina. Journal of Orthoptera Research 9, 211221.10.2307/3503649CrossRefGoogle Scholar
De Wysiecki, ML, Torrusio, S and Cigliano, MM (2004) Caracterización de las comunidades de acridiosdel partido de Benito Juárez, sudeste de la provincial de Bs. As, Argentina. Revista de la Sociedad Entomológica Argentina 63, 8796.Google Scholar
De Wysiecki, ML, Arturi, M, Torrusio, S and Cigliano, MM (2011) Influence of weather variables and plant communities on grasshopper density in the Southern Pampas, Argentina. Journal of Insect Science 11, 111.10.1673/031.011.10901CrossRefGoogle ScholarPubMed
Ebeling, A, Hinesb, J, Hertzogd, LR, Lange, M, Meyerd, ST, Simons, NK and Wisser, W (2018) Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic and Applied Ecology 26, 5063.10.1016/j.baae.2017.09.014CrossRefGoogle Scholar
Evans, EW (1988) Grasshopper (Insecta: Orthoptera: Acrididae) assemblages of tallgrass prairie: influences of fire frequency, topography, and vegetation. Canadian Journal of Zoology 66, 14951501.10.1139/z88-219CrossRefGoogle Scholar
Ferrelli, F (2017) Efectos de eventos El Niño y La Niña sobre las lagunas del sur de la Región Pampeana (Argentina). Inter Espaço: Revista de Geografia e Interdisciplinaridade 2, 122142.Google Scholar
Forte Lay, JA, Scarpati, OE, Spescha, LB and Capriolo, AD (2007) Drought risk in the pampean water using soil mater storage analysis. In Jones, JAA and Scarpati, OE (eds), Environmental Change and Rational Water Use. Buenos Aires: Orientación Gráfica, pp. 146168. Orientación Gráfica.Google Scholar
Franzke, A and Reinhold, K (2011) Stressing food plants by altering water availability affects grasshopper performance. Ecosphere (Washington, D.C) 2, Art. 85.Google Scholar
Gandwere, SK and Ronderos, RA (1975) A synopsis of food selection in Argentine Acridoidea. Acrida 4, 173194.Google Scholar
Gardiner, T (2010) Precipitation and habitat degradation influence the occurrence of the common green grasshopper Omocestus viridulus in Southeastern England. Journal of Orthoptera Research 19, 315326.CrossRefGoogle Scholar
Guo, ZW, Li, HC and Gan, YL (2006) Grasshoppers (Orthoptera: Acrididae) biodiversity and grassland ecosystems. Insect Science 13, 221227.10.1111/j.1744-7917.2006.00086.xCrossRefGoogle Scholar
Guo, K, Hao, SG, Sun, OJ and Kang, L (2009) Differential responses to warming and increased precipitation among three contrasting grasshopper species. Global Change Biology 15, 25392548.CrossRefGoogle Scholar
Hawlena, D and Schmitz, OJ (2010) Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proceedings of the National Academy of Sciences 107, 1550315507.CrossRefGoogle ScholarPubMed
Hertzog, LR, Meyer, ST, Weisser, WW and Ebeling, A (2016) Experimental manipulation of grassland plant diversity induces complex shift sin above ground arthropod diversity. PLoS ONE 11, e0148768.10.1371/journal.pone.0148768CrossRefGoogle Scholar
Huberty, AF and Denno, RF (2004) Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85, 13831398.10.1890/03-0352CrossRefGoogle Scholar
Joern, A (1985) Resource partitioning by grasshopper species from grassland communities. Proceedings 4th Triennial Meeting, Pan American, Acridological Society 28 July–2 August 1985. pp. 75–100.Google Scholar
Joern, A (2005) Disturbance by fire frequency and bison grazing modulate grasshopper assemblages in tallgrass prairie. Ecology 86, 861873.CrossRefGoogle Scholar
Joern, A and Behmer, ST (1998) Impact of diet quality on demographic attributes in adult grasshoppers and the nitrogen limitation hypothesis. Ecological Entomology 23, 174184.CrossRefGoogle Scholar
Jonas, JL and Joern, A (2007) Grasshopper (Orthoptera: Acrididae) communities respond to fire, bison grazing and weather in North American tallgrass prairie: a long-term study. Oecologia 153, 699711.CrossRefGoogle ScholarPubMed
Kemp, WP and Cigliano, MM (1992) Temporal variation in rangeland grasshopper (Orthoptera: Acrididae) communities in the steppe region of Montana, USA. Canadian Entomology 124, 437450.10.4039/Ent124437-3CrossRefGoogle Scholar
Kemp, WP and Cigliano, MM (1994) Drought and rangeland grasshopper species diversity. Canadian Entomologist 126, 10751092.CrossRefGoogle Scholar
Lange, CE and Cigliano, MM (2019 a) Spotted-winged grasshopper, Dichroplus maculipennis (Blanchard, 1851) (Orthoptera: Acrididae). In Lecoq, M and Zhang, L (eds), Encyclopedia of Pest Orthoptera of the World. Pekin, China: China Agricultural University Publisher, pp. 8386.Google Scholar
Lange, CE and Cigliano, MM (2019 b) Elongated grasshopper, Dichroplus elongatus (Giglio-Tos, 1894) (Orthoptera: Acrididae). In Lecoq, M and Zhang, L (eds), Encyclopedia of Pest Orthoptera of the World. Pekin, China: China Agricultural University Publisher, pp. 7982.Google Scholar
Larson, DP, O'Neill, KM and Kemp, WP (1999) Evaluation of the accuracy of sweepsampling in determining grasshopper (Orthoptera: Acridoidea) community composition. Journal of Agronomical Urban Entomology 16, 207214.Google Scholar
Lecoq, M and Zhang, L (2019) Encyclopedia of Pest Orthoptera of the World. Beijing: China Agricultural University Press Ltd. pp. 325.Google Scholar
Lenhart, PA, Eubanks, MD and Behmer, ST (2015) Water stress in grasslands: dynamic responses of plants and insect herbivores. Oikos 124, 381390.10.1111/oik.01370CrossRefGoogle Scholar
Liebermann, J and Schiuma, R (1946) Las “tucuras” más perjudiciales de nuestra agricultura y ganadería. Serie B. Buenos Aires: Ministerio Agricultura de la Nación. Instituto de Sanidad Vegetal, 39 p.Google Scholar
Lorier, E, De Miguel, L and Zerbino, MS (2010) Manejo de tucuras. En Altier, N, Rebuffo, M and Cabrera, K (eds), Enfermedades y plagas en pasturas. Montevideo: INIA. Serie técnica, vol. 183, pp. 5171.Google Scholar
Mariottini, Y, De Wysiecki, ML and Lange, CE (2011) Seasonal occurrence of life stages of grasshoppers (Orthoptera: Acridoidea) in the Southern Pampas, Argentina. Zoological Studies 50, 737744.Google Scholar
Mariottini, Y, De Wysiecki, ML and Lange, CE (2012) Variación temporal de la riqueza, composición y densidad de acridios (orthoptera: acridoidea) en diferentes comunidades vegetales del sur de la provincia de buenos aires. Revista de la Sociedad Entomológica Argentina 71, 275288.Google Scholar
Mariottini, Y, De Wysiecki, ML and Lange, CE (2013) Diversidad y distribución de acridios (Orthoptera: Acridoidea) en pastizales del sur de la región pampeana, Argentina. Revista de Biología Tropical 61, 111124.CrossRefGoogle Scholar
Mariottini, Y, Lange, CE, Cepeda, R and De Wysiecki, ML (2019) Efficiency of food utilization by Dichroplus maculipennis (Orthoptera: Acrididae: Melanoplinae) on four crop plants under controlled conditions. Studies on Neotropical Fauna and Environment 54, 206216.CrossRefGoogle Scholar
Mariottini, Y, Mancini, M, Trofino, C, de Wysiecki, ML and Lange, CE (2021) Abundance, distribution, and associated forage losses of pest grasshoppers (Orthoptera: Acrididae) in the Argentine Pampas. Anais Da Academia Brasileira De Ciencias (in press).Google Scholar
Mattson, WJ (1980) Herbivory in relation to plant nitrogen content. Annual Review Ecology. Evolution and Systematics 11, 119161.CrossRefGoogle Scholar
Mattson, WJ and Haack, RA (1987) The role of drought in outbreaks of plant-eating insects. Bioscience 37, 110118.CrossRefGoogle Scholar
Minetti, JL, Vargas, WM, Poblete, AG and Bobba, ME (2010) Regional drought in the southern of South America – physical aspects. Revista Brasileira de Meteorologia 25, 88102.CrossRefGoogle Scholar
National Meteorological Service (2009) Informe Sobre Sequía. Available at http://www.smn.gov.ar/?mod=clima&id=75.Google Scholar
Onsager, JA and Henry, JE (1977) A method for estimating the density of rangeland grasshoppers (Orthoptera, Acrididae) in experimental plots. Acrida 6, 231237.Google Scholar
Perelman, SB, León, RJC and Oesterheld, M (2001) Cross-scale vegetation patterns of Flooding Pampa Grasslands. Journal of Ecology 89, 562577.10.1046/j.0022-0477.2001.00579.xCrossRefGoogle Scholar
Perner, J, Wytrykush, C, Kahmen, A, Buchmann, N, Egerer, I, Creutzburg, S, Odat, N, Audorff, V and Weisser, WW (2005) Effects of plant diversity, plant productivity and habitat parameters on arthropod abundance in montane European grasslands. Ecography 28, 429442.CrossRefGoogle Scholar
Recavarren, P (2016) La producción agropecuaria en Olavarría, Benito Juárez, Laprida y Gral. La Madrid: evolución y desafíos a futuro, Primera edición. Balcarce, Buenos Aires: Ediciones INTA.Google Scholar
Ronderos, RA (1959) Identificación de las especies de tucuras más comunes en la Provincia de Buenos Aires. Agro 1, 131.Google Scholar
Ronderos, RA (1986) Stability and diversity of grasshoppers due to spatial heterogeneicity. Proceedings of the 4th. Triennial Meeting of the Pan American Acridological Society.Google Scholar
Rourke, BC (2000) Geographic and altitudinal variation in water balance and metabolic rate in a California grasshopper, Melanoplus sanguinipes. Journal of Experimental Biology 203, 26992712.CrossRefGoogle Scholar
Sala, OE, Parton, WJ, Joyce, LA and Lauenroth, WK (1988) Primary production of the central grassland region of the United States. Ecology 69, 4045.CrossRefGoogle Scholar
Sánchez, NE and De Wysiecki, ML (1993) Abundancia y diversidad de acridios (Orthoptera: Acrididae) en pasturas de la Provincia de La Pampa, Argentina. Revista Investigaciones Agropecuarias RIA 24, 2939.Google Scholar
Sandel, B, Goldstein, LJ, Kraft, NJB, Okie, JG, Shuldman, MI, Ackerly, DD, Cleland, EE and Suding, KN (2010) Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytologist 188, 565575.CrossRefGoogle ScholarPubMed
Scarpati, OE and Capriolo, AD (2013) Sequías e inundaciones en la provincia de Buenos Aires (Argentina) y su distribución espacio-temporal. Investigaciones Geográficas, Boletín del Instituto de Geografía 82, 3851.CrossRefGoogle Scholar
Song, H, Mariño-Pérez, R, Woller, DA and Cigliano, MM (2018) Evolution, diversification, and biogeography of grasshoppers (Orthoptera: Acrididae). Insect Systematics and Diversity 2, 3.10.1093/isd/ixy008CrossRefGoogle Scholar
Stige, LC, Chan, KS, Zhang, Z, Frank, D and Stenseth, NC (2007) Thousand-year-long Chinese time series reveals climate forcing of decadal locust dynamics. Proceedings of the National Academy of Sciences of the United States of America 16, 1618816193.CrossRefGoogle Scholar
Torrusio, SA and Otero, J (2009) Monitoreo de tucuras, análisis de imágenes Landsat 5 TM realizado en la CONAE. Programa Nacional de monitoreo de tucuras.Google Scholar
Torrusio, SA, Cigliano, MM and De Wysiecki, ML (2002) Grasshopper (Orthoptera: Acrididae) and plant community relationships in the Argentine Pampas. Journal of Biogeography 29, 221229.CrossRefGoogle Scholar
Viglizzo, EF, Lértora, FA, Pordomingo, AJ, Bernardos, J, Roberto, ZE and Del Valle, H (2001) Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agriculture, Ecosystems and Environment 81, 6581.10.1016/S0167-8809(00)00155-9CrossRefGoogle Scholar
Viglizzo, EF, Frank, FC, Carreño, LV, Jobbágy, EG, Pereyra, H, Clatt, J, Pincén, D and Ricard, FM (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global Change Biology 17, 959973.CrossRefGoogle Scholar
White, TCR (1993) The Inadequate Environment: Nitrogen and the Abundance of Animals. Berlin: Springer.CrossRefGoogle Scholar
Yang, HJ, Li, Y, Wu, MY, Zhang, Z, Li, LH and Wan, SQ (2011) Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biology 17, 29362944.CrossRefGoogle Scholar
Zavaleta, ES, Shaw, MR, Chiariello, NR, Thomas, BD, Cleland, EE, Field, CB and Mooney, FH (2003) Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecological Monographs 73, 585604.CrossRefGoogle Scholar
Zhang, ZB, Cazelles, B, TianHD, SL, Bräuning, A and Stenseth, NC (2009) Periodic temperature-associated drought/flood drivers locust plagues in China. Proceedings of the Royal Society B 276, 823831.CrossRefGoogle Scholar
Zhu, H, Qu, YK, Zhang, D, Li, JJ, Wen, M, Wang, DL and Ren, BZ (2017) Impacts of grazing intensity and increased precipitation on a grasshopper assemblage (Orthoptera: Acrididae) in a meadow steppe. Ecological Entomology 42, 458468.CrossRefGoogle Scholar
Zohdy, NM, Abdel Rahman, KM and Ame, NR (2015) Effect of temperature on egg development and life table of Chrotogonus homalodemus (Blanchard, 1836) (Orthoptera: Pyrgomorphidae). Catrina 10, 19.Google Scholar
Supplementary material: File

Mariottini et al. supplementary material

Mariottini et al. supplementary material

Download Mariottini et al. supplementary material(File)
File 818.2 KB