Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T18:20:51.388Z Has data issue: false hasContentIssue false

Real-time PCR assay for distinguishing Frankliniella occidentalis and Thrips palmi Arnika Przybylska, Żaneta Fiedler, Aleksandra Obrępalska-Stęplowska

Published online by Cambridge University Press:  01 March 2017

Arnika Przybylska
Affiliation:
Institute of Plant Protection – National Research Institute, 20 Władysława Węgorka St, Poznań, Poland
Żaneta Fiedler
Affiliation:
Institute of Plant Protection – National Research Institute, 20 Władysława Węgorka St, Poznań, Poland
Patryk Frąckowiak
Affiliation:
Institute of Plant Protection – National Research Institute, 20 Władysława Węgorka St, Poznań, Poland
Aleksandra Obrępalska-Stęplowska*
Affiliation:
Institute of Plant Protection – National Research Institute, 20 Władysława Węgorka St, Poznań, Poland
*
*Author for correspondence Tel.: +48 61 8649145 Fax: +48 61 8676301 E-mail: [email protected]

Abstract

Thrips palmi and Frankliniella occidentalis (order Thysanoptera) are thrips species that represent major plant pests. They are polyphagous insects capable of adversely affecting crop production. As such, in the European Union, these thrips species should be regulated as quarantine organisms. T. palmi and F. occidentalis can cause considerable damage to susceptible plants by feeding on them and transmitting several viruses responsible for serious plant diseases. Successful pest control strategies are based on an early, fast, and reliable diagnosis, which precedes the selection of appropriate steps to limit the effects of harmful organisms. We herein describe a novel diagnostic approach that enables the sensitive and species-specific detection (and differentiation) of these pests in a duplex polymerase chain reaction assay, which was adapted for both standard and real-time quantitative assays. Our method is based on the amplification of a 5.8S-internal transcribed spacer 2 ribosomal DNA fragment that is conserved between T. palmi and F. occidentalis.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boonham, N., Smith, P., Walsh, K., Tame, J., Morris, J., Spence, N., Bennison, J. & Barker, I. (2002) The detection of Tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RT–PCR (TaqMan). Journal of Virological Methods 101, 3748.Google Scholar
Bru, D., Martin-Laurent, F. & Philippot, L. (2008) Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S rRNA gene as an example. Applied and Environmental Microbiology 74, 16601663.Google Scholar
Brunner, P., Fleming, C. & Frey, J. (2002) A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCR–RFLP-based approach. Agricultural and Forest Entomology 4, 127136.Google Scholar
CABI (2016) Invasive species compendium: Frankliniella occidentalis (Western Flower Thrips). Centre for Agricultural Bioscience International. Available online at http://www.cabi.org/isc/datasheet/24426Google Scholar
Cannon, R., Matthews, L. & Collins, D. (2007) A review of the pest status and control options for Thrips palmi. Crop Protection 26, 10891098.Google Scholar
Cermeli, M. & Montagne, A. (1993) Present situation of Thrips palmi Karny (Thysanoptera: Thripidae) in Venezuela. Manejo Integrado de Plagas 28, 2223.Google Scholar
Chau, A. & Heinz, K.M. (2006) Manipulating fertilization: a management tactic against Frankliniella occidentalis on potted chrysanthemum. Entomologia Experimentalis et Applicata 120, 201209.CrossRefGoogle Scholar
Chen, C., Chen, T., Lin, Y., Yeh, S. & Hsu, H. (2005) A chlorotic spot disease on calla lilies (Zantedeschia spp.) is caused by a tospovirus serologically but distantly related to Watermelon silver mottle virus. Plant Disease 89, 440445.Google Scholar
Cloyd, R.A. (2009) Western flower thrips (Frankliniella occidentalis) management on ornamental crops grown in greenhouses: have we reached an impasse. Pest Technology 3, 19.Google Scholar
EPPO (2015a) A1 List of pests recommended for regulation as quarantine pests EPPO (version 2015-09) Available online at https://www.eppo.int/QUARANTINE/listA1.htmGoogle Scholar
EPPO (2015b) A2 List of pests recommended for regulation as quarantine pests EPPO (version 2015-09) Available online at http://www.eppo.org/QUARANTINE/listA2.htmlGoogle Scholar
Fujisawa, I. (1988) Tomato spotted wilt virus transmissibility by three species of thrips, Thrips setosus, Thrips tabaci and Thrips palmi. Annals of the Phytopathological Society of Japan 54, 392.Google Scholar
Goldbach, R. & Peters, D. (1994) Possible causes of the emergence of tospovirus diseases. Seminars in Virology 5, 113120.Google Scholar
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Houston, K., Mound, L. & Palmer, J. (1991) Two pest thrips (Thysanoptera) new to Australia, with notes on the distribution and structural variation of other species. Australian Journal of Entomology 30, 231232.CrossRefGoogle Scholar
Huang, K., Lee, S., Yeh, Y., Shen, G., Mei, E. & Chang, C. (2010) Taqman real-time quantitative PCR for identification of western flower thrip (Frankliniella occidentalis) for plant quarantine. Biology Letters. doi: 10.1098/rsbl.2009.1060.Google Scholar
Ishida, H., Murai, T., Sonoda, S., Yoshida, H., Izumi, Y. & Tsumuki, H. (2003) Effects of temperature and photoperiod on development and oviposition of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Applied Entomology and Zoology 38, 6568.Google Scholar
Iwaki, M., Honda, Y., Hanada, K., Tochihara, H., Yonaha, T., Hokama, K. & Yokoyama, T. (1984) Silver mottle disease of watermelon caused by Tomato spotted wilt virus. Plant Disease 68, 10061008.CrossRefGoogle Scholar
Kato, K. (2000) Recent topics on pests: melon yellow spot virus. Agriculture and Horticulture 75, 103107.Google Scholar
Kirk, W.D. & Terry, L.I. (2003) The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agricultural and Forest Entomology 5, 301310.CrossRefGoogle Scholar
Kox, L., Van Den Beld, H., Zijlstra, C. & Vierbergen, G. (2005) Real-time PCR assay for the identification of Thrips palmi. EPPO Bulletin 35, 141148.Google Scholar
Lewis, T. (1997) Thrips as Crop Pests. Cab International, Wallingford, UK.Google Scholar
MacLeod, A., Head, J. & Gaunt, A. (2004) An assessment of the potential economic impact of Thrips palmi on horticulture in England and the significance of a successful eradication campaign. Crop Protection 23, 601610.Google Scholar
Mainali, B.P., Shrestha, S., Lim, U.T. & Kim, Y. (2008) Molecular markers of two sympatric species of the genus Frankliniella (Thysanoptera: Thripidae). Journal of Asia-Pacific Entomology 11, 4548.Google Scholar
Marullo, R. (2002) Impact of an introduced pest thrips on the indigenous natural history and agricultural systems of southern Italy. pp. 285288 in Marullo, R. & Mound, L. (Eds) Proceedings of the Thrips and Tospoviruses, Canberra, Australian National Insect Collection, 2002.Google Scholar
McDonald, J., Bale, J. & Walters, K. (1997) Effects of sub-lethal cold stress on the Western Flower Thrips, Frankliniella occidentalis. Annals of Applied Biology 131, 189195.Google Scholar
Moritz, G., Delker, C., Paulsen, M., Mound, L.A. & Burgermeister, W. (2000) Modern methods for identification of Thysanoptera. EPPO Bulletin 30, 591593.Google Scholar
Morse, J.G. & Hoddle, M.S. (2006) Invasion biology of thrips. Annual Review of Entomology 51, 6789.CrossRefGoogle ScholarPubMed
Mound, L.A. (1997) Biological diversity. pp. 197215 in Lewis, T.. (Ed.) Thrips as Crop Pests. Wallingford, CAB International.Google Scholar
Mound, L.A. & Gillespie, P. (1997) Identification Guide to Thrips Associated with Crops in Australia. NSW Agriculture, Orange, NSW.Google Scholar
Murai, T. (2002) The pest and vector from the East: Thrips palmi. pp. 1932 in Proceedings of the Thrips and Tospoviruses: Proceedings of the 7th International Symposium on Thysanoptera. Canberra, Australian National Insect Collection, 2002.Google Scholar
Nakahara, S. & Minoura, K. (2015) Identification of four thrips species (Thysanoptera: Thripidae) by multiplex polymerase chain reaction. Research Bulletin of the Plant Protection Service Japan 51, 3742.Google Scholar
Okuda, M., Takeuchi, S., Taba, S., Kato, K. & Hanada, K. (2002) Melon yellow spot virus and Watermelon silver mottle virus: outbreak of cucurbit infecting tospovirus in Japan. Acta Horticulturae 588, 143148.Google Scholar
Przybylska, A., Fiedler, Ż., Kucharczyk, H. & Obrępalska-Stęplowska, A. (2015) Detection of the quarantine species Thrips palmi by loop-mediated isothermal amplification. PLoS ONE 10, e0122033.Google Scholar
Przybylska, A., Fiedler, Ż. & Obrępalska-Stęplowska, A. (2016) PCR-RFLP method to distinguish Frankliniella occidentalis, Frankliniella intonsa, Frankliniella pallida and Frankliniella tenuicornis. Journal of Plant Protection Research 56, 6066.Google Scholar
Rao, X., Liu, Y., Wu, Z. & Li, Y. (2011) First report of natural infection of watermelon by Watermelon silver mottle virus in China. New Disease Reports 24, 2044–0588.2011.Google Scholar
Rebijith, K., Asokan, R., Kumar, N.K., Krishna, V. & Ramamurthy, V. (2012) Development of species-specific markers and molecular differences in mtDNA of Thrips palmi Karny and Scirtothrips dorsalis Hood (Thripidae: Thysanoptera), vectors of tospoviruses (Bunyaviridae) in India. Entomological News 122, 201213.Google Scholar
Reddy, D., Ratna, A., Sudarshana, M., Poul, F. & Kumar, I.K. (1992) Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut (Arachis hypogaea L.) in India*. Annals of Applied Biology 120, 279286.Google Scholar
Riley, D.G., Joseph, S.V., Srinivasan, R. & Diffie, S. (2011) Thrips vectors of tospoviruses. Journal of Integrated Pest Management 1, 110.Google Scholar
Seal, D.R., Kumar, V., Kakkar, G. & Mello, S.C. (2013) Abundance of adventive Thrips palmi (Thysanoptera: Thripidae) populations in Florida during the first sixteen years. Florida Entomologist 96, 789796.Google Scholar
Smith, I.M., C.A.B. International, European & M.P.P. Organisation (1997) Quarantine Pests for Europe: Data Sheets on Quarantine Pests for the European Union and for the European and Mediterranean Plant Protection Organization. CAB International.Google Scholar
Stadhouders, R., Pas, S.D., Anber, J., Voermans, J., Mes, T.H. & Schutten, M. (2010) The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5′ nuclease assay. Journal of Molecular Diagnostics 12, 109117.Google Scholar
Toda, S. & Komazaki, S. (2002) Identification of thrips species (Thysanoptera: Thripidae) on Japanese fruit trees by polymerase chain reaction and restriction fragment length polymorphism of the ribosomal ITS2 region. Bulletin of Entomological Research 92, 359363.Google Scholar
Walker, A. (1994) A review of the pest status and natural enemies of Thrips palmi. Biocontrol News and Information 15, 710N.Google Scholar
Walsh, K., Boonham, N., Barker, I. & Collins, D. (2005) Development of a sequence-specific real-time PCR to the melon thrips Thrips palmi (Thysan., Thripidae). Journal of Applied Entomology 129, 272279.Google Scholar
Wang, C.-L., Lin, F.-C., Chiu, Y.-C. & Shih, H.-T. (2010) Species of Frankliniella Trybom (Thysanoptera: Thripidae) from the Asian-Pacific Area. Zool. Stud 49, 824848.Google Scholar
Welter, S.C., Rosenheim, J.A., Johnson, M.W., Mau, R. & Gusukuma-Minuto, L.R. (1990) Effects of Thrips palmi and western flower thrips (Thysanoptera: Thripidae) on the yield, growth, and carbon allocation pattern in cucumbers. Journal of Economic Entomology 83, 20922101.Google Scholar
Wieczorek, P. & Obrępalska-Stęplowska, A. (2013) Multiplex RT-PCR reaction for simultaneous detection of Tomato torrado virus and Pepino mosaic virus co-infecting Solanum lycopersicum. Journal of Plant Protection Research 53, 289294.Google Scholar
Yadav, R., Chang, N.T. (2012) Temperature-dependent development and life table parameters of Thrips palmi on eggplant. Applied Entomology and Zoology 47(4), 301310.Google Scholar
Yeh, S.-D., Lin, Y.-C., Cheng, Y.-H., Jih, C.-L., Chen, M. & Chen, C.-C. (1992) Identification of tomato spotted wilt-like virus on watermelon in Taiwan. Plant Diseases 76, 835840.Google Scholar
Yeh, W., Tseng, M., Chang, N., Wu, S. & Tsai, Y. (2014) Development of species-specific primers for agronomical thrips and multiplex assay for quarantine identification of western flower thrips. Journal of Economic Entomology 107, 17281735.Google Scholar
Zhang, G., Meng, X., Min, L., Qiao, W. & Wan, F. (2012) Rapid diagnosis of the invasive species, Frankliniella occidentalis (Pergande): a species-specific COI marker. Journal of Applied Entomology 136, 410420.Google Scholar
Zhang, G.-F., Wu, X., Zhou, Z.-X., Meng, X.-Q. & Wan, F.-H. (2014) A one-step, single tube, duplex PCR to detect predation by native predators on invasive Bemisia tabaci MEAM1 and Frankliniella occidentalis. Entomologia Experimentalis et Applicata 150, 6673.Google Scholar