Published online by Cambridge University Press: 09 December 2019
The willow sawfly, Nematus oligospilus (Förster), is a pest in Salix commercial forests and has been reported worldwide. Female adults must recognize a suitable host plant to oviposit, since her offspring lack the ability to move to another host. We evaluated the effect of conspecific herbivory on the oviposition choices of N. oligospilus females by providing damaged (DP) and undamaged (UP) plants of Salix humboldtiana, a native willow from South America, as oviposition substrates. Local and systemic effects were studied. For the local treatment, a twig from the DP with damaged leaves was contrasted to a twig from a UP in dual choice experiments. For systemic treatment, a twig from the DP with intact leaves was contrasted to a twig from a UP. We estimated the use of olfactory and contact cues by comparing volatile emission of DP and UP, and by analysing the behaviour of the females during host recognition after landing on the leaf surface. In the context of the preference–performance hypothesis (PPH), we also tested if oviposition site selection maximizes offspring fitness by evaluating neonate hatching, larval performance and survival of larvae that were born and bred on either DP or UP. Our results demonstrate that previous conspecific herbivory on S. humboldtiana has a dramatic impact on female oviposition choices and offspring performance of the sawfly N. oligospilus. Females showed a marked preference for laying eggs on UP of S. humboldtiana. This preference was found for both local and systemic treatments. Volatile emission was quantitatively changed after conspecific damage suggesting that it could be related to N. oligospilus avoidance. In the dual choice preference experiments, the analysis of the behaviour of the females once landing on the leaf surface suggested the use of contact cues triggering egg laying on leaves from UP and avoidance of leaves from DP. Furthermore, 48 h of previous conspecific feeding was sufficient to dramatically impair neonate hatching, as well as larval development and survival, suggesting a rapid and effective reaction of the induced resistance mechanisms of the tree. In agreement with the PPH, these results support the idea that decisions made by colonizing females may result in optimal outcomes for their offspring in a barely studied insect model, and also opens the opportunity for studying tree-induced defences in the unexplored South American willow S. humboldtiana.