Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T11:10:50.814Z Has data issue: false hasContentIssue false

A pilot study on the molecular phylogeny of Drepanoidea (Insecta: Lepidoptera) inferred from the nuclear gene EF-1α and the mitochondrial gene COI

Published online by Cambridge University Press:  07 July 2009

C.G. Wu
Affiliation:
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China Graduate University of the Chinese Academy of Sciences, Beijing100049, China
H.X. Han
Affiliation:
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
D.Y. Xue*
Affiliation:
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
*
*Author for correspondence Fax: +86-10-64807099 E-mail: [email protected]

Abstract

A molecular phylogenetic study of the Drepanoidea based on the EF-1α sequences and combined EF-1α and COI sequences was carried out in order to infer higher classification at and above the subfamily level. The sample contained 14 taxa representing 13 genera recognized in the Drepanoidea. The results revealed that the Drepaninae, Thyatirinae and Cyclidiinae respectively form monophyletic groups. The sister relationship between the Drepaninae and the Thyatirinae was validated. The monophyly of the Cyclidiinae with the Drepaninae+Thyatirinae was supported robustly. Hypsomadius insignis and Oreta vatama within the traditional definition of the Drepaninae formed an individual clade with robust support (100%) and constitutes a sister relationship to a clade containing the rest of the Drepaninae in all the topologies, which means that the subfamily Oretinae of the Drepanidae should be restored. The family Drepanidae is divided into four subfamilies: Drepaninae, Oretinae, Thyatirinae and Cyclidiinae in this work. The family Epicopeiidae formed a monophyly with high bootstrap values. The result of combined analysis of EF-1α and COI showed that the Epicopeiidae have a closer phylogenetic relationship with the Geometridae than with the Drepanidae and belong to neither the Drepanoidea nor the Geometroidea.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, D., Ryrholm, N., Wittzell, H., Holloway, J.D., Scoble, M.J. & Löfstedt, C. (2001) Molecular Phylogeny of the Subfamilies in Geometridae (Geometroidea: Lepidoptera). Molecular Phylogenetics and Evolution 20, 6577.CrossRefGoogle ScholarPubMed
Belshaw, R. & Quicke, D.L.J. (1997) A molecular phylogeny of the Aphidiinae (Hymenoptera: Braconidae). Molecular Phylogenetics and Evolution 7, 281293.Google Scholar
Braby, M.F., Vila, R. & Pierce, N.E. (2006) Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and biogeography. Zoological Journal of the Linnean Society 147, 239275.Google Scholar
Brower, A.V.Z. & DeSalle, R. (1994) Practical and theoretical considerations for choice of a DNA sequence region in insect molecular systematics, with a short review of published studies using nuclear gene regions. Annals of the Entomological Society of America 87, 702716.CrossRefGoogle Scholar
Caterino, M.S., Cho, S. & Sperling, F.A.H. (2000) The current state of insect molecular systematics: A thriving tower of Babel. Annual Review of Entomology 45, 154.CrossRefGoogle ScholarPubMed
Caterino, M.S., Reed, R.D., Kuo, M.M. & Sperling, F.A.H. (2001) A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera: Papilinonidae). Systematic Biology 50, 106127.CrossRefGoogle Scholar
Cho, S., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander, T.P. & Zhao, S. (1995) A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1a recovers morphology-based tree for heliothine moths. Molecular Biology and Evolution 12, 650656.Google Scholar
Cho, S., Mitchell, A., Mitter, C., Regier, J., Matthews, M. & Robertson, R. (2008) Molecular phylogenetics of heliothine moths (Lepidoptera: Noctuidae: Heliothinae), with comments on the evolution of host range and pest status. Systematic Entomology 33, 581594.CrossRefGoogle Scholar
Clary, D.O. & Wolstenholme, D.R. (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution 22, 252271.CrossRefGoogle ScholarPubMed
Danforth, B.N. & Shuqing, J. (1998) Elongation factor-1a occurs as two copies in bees: implications for phylogenetic analysis of EF-1α sequences in insects. Molecular Biology and Evolution 15, 225235.Google Scholar
Farris, J.S., Källersjö, M., Kluge, A.G. & Bult, C. (1995) Testing significance of incongruence. Cladistics 10, 315319.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Friedlander, T.P., Regier, J.C. & Mitter, C. (1992) Nuclear gene sequences for higher level phylogenetic analysis: 14 promising candidates. Systematic Biology 41, 483490.Google Scholar
Friedlander, T.P., Regier, J.C. & Mitter, C. (1994) Phylogenetic information content of five nuclear gene sequences in animals: initial assessment of character sets from concordance and divergence studies. Systematic Biology 43, 511525.CrossRefGoogle Scholar
Friedlander, T.P., Horst, K.R., Regier, J.C., Mitter, C., Peigler, R.S. & Fang, Q.Q. (1998) Two nuclear genes yield concordant relationships within Attacini (Lepidoptera: Saturnidae). Molecular Phylogenetics and Evolution 9, 131140.CrossRefGoogle Scholar
Gleeson, D.M., Rowell, D.M., Tait, N.N., Briscoe, D.A. & Higgins, A.V. (1998) Phylogenetic relationships among Onychophora from Australasia inferred from the mitochondrial cytochrome oxidase subunit I gene. Molecular Phylogenetics and Evolution 10, 237248.CrossRefGoogle ScholarPubMed
Gohrbandt, I. (1937) Das Tympanalorgan der Drepaniden und der Cymatophoriden zugleich ein Beitrag zur vergleichenden Morphologie und Histologie der Lepidopteren. Zeitschrift für wissenschaftliche Zoologie 149, 537600.Google Scholar
Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 181192.Google Scholar
Holloway, J.D. (1998) The Moths of Borneo: Families Castniidae, Callidulidae, Drepanidae and Uraniidae. The Malayan Nature Journal 52, 1155.Google Scholar
Holloway, J.D., Kirby, G. & Peggie, D. (2001) Fauna Malesiana Handbooks: The Families of Malesian Moths and Butterflies. 455 pp. Leiden, The Netherlands, Brill.CrossRefGoogle Scholar
Huelsenbeck, J.P., Ronquist, F., Nielsen, R. & Bollback, J.P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 23102314.CrossRefGoogle ScholarPubMed
Imms, A. (1934) A General Textbook of Entomology. xii+727 pp. London, Methuen & Co.Google Scholar
Inoue, H. (1954) Check List of the Lepidoptera of Japan. Vol. 1. xiii+112 pp. Tokyo, Rikusuisha.Google Scholar
Inoue, H. (1962) Insecta Japonica. series 2, part 1. Lepidoptera: Cyclidiidae, Drepanidae. 54 pp. Tokyo, Hokuryukan Publishing Co.Google Scholar
Kamie, K., Taira, H., Ooura, H., Kakuta, A., Matsumoto, S., Ejiri, S.-I. & Katsumata, T. (1993) Nucleotide sequence of the cDNA encoding silk gland elongation factor 1α. Nucleic Acids Research 21, 742.CrossRefGoogle Scholar
Kandul, N.P., Lukhtanov, V.A., Dantchenko, A.V., Coleman, J.W.S., Sekercioglu, C.H., Haig, D. & Pierce, N.E. (2004) Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF-1α: Karyotype diversification and species radiation. Systematic Biology 53, 278298.Google Scholar
Kawakita, A., Takimura, A., Terachi, T., Sota, T. & Kato, M. (2004) Cospeciation analysis of an obligate pollination mutualism: Have Glochidion trees (Euphorbiaceae) and pollinating Epicephala moths (Gracillariidae) diversified in parallel? Evolution 58, 22012214.Google ScholarPubMed
Ketmaier, V., Joyce, D.A., Horton, T. & Mariani, S. (2008) A molecular phylogenetic framework for the evolution of parasitic strategies in cymothoid isopods (Crustacea). Journal of Zoological Systematics and Evolutionary Research 46, 1923.Google Scholar
Kristensen, N.P., Scoble, M.J. & Karsholt, O. (2007) Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668, 699747.Google Scholar
Kumar, S., Tamura, K. & Nei, M. (2004) MEGA 3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5, 150163.CrossRefGoogle Scholar
Kuznetzov, V.I. & Stekolnikov, A.A. (2001) New approaches to the system of Lepidoptera of World Fauna (on the base of the functional morphology of abdomen). Proceedings of the Zoological Institute of St Petersburg 282, 1462.Google Scholar
Lunt, D.H., Zhang, D.X., Szymura, J.M. & Hewitt, G.M. (1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology 5, 153165.CrossRefGoogle ScholarPubMed
McDunnough, J. (1938) Check List of the Lepidoptera of Canada and the United States of America. Part I. Macrolepidoptera. Los Angeles, California, Southern California Academy of Sciences.CrossRefGoogle Scholar
Minet, J. (1983) Etude morphologique et phylogénétique des organs tympaniques des Pyraloidea. I. généralités et homologies. (Lep. Glossata). Annales de la Société entomologique de Francei (N.S.) 19, 175207.CrossRefGoogle Scholar
Minet, J. (1985) Définition d'un nouveau genre au seine des Drepanoidea paléarctiques (Lep. Drepanoidea). Entomologica Gallica 1, 291304.Google Scholar
Minet, J. (1991) Tentative reconstruction of the ditrysian phylogeny (Lepidoptera: Glossata). Entomologica Scandinavica 22, 6995.CrossRefGoogle Scholar
Minet, J. (2002) The Epicopeiidae: Phylogeny and a redefinition, with the description of new taxa (Lepidoptera: Drepanoidea). Annales de la Societe Entomologique de France 38, 463487.Google Scholar
Minet, J. & Scoble, M.J. (1999) The drepanoid/geometroid assemblage. pp. 301320 in Kristensen, N.P. (Ed.) Handbook of Zoology, Vol. IV. Arthropoda: Insecta. Part 35. Lepidoptera, Moths and Butterflies. Berlin & New York, Walter de Gruyter.Google Scholar
Mitchell, A., Cho, S., Regier, J.C., Mitter, C., Poole, R.W. & Matthews, M. (1997) Phylogenetic utility of elongation factor-1α in Noctuoidea (Insecta: Lepidoptera): the limits of synonymous substitution. Molecular Biology and Evolution 14, 381390.Google Scholar
Mitchell, A., Mitter, C. & Regier, J.C. (2000) More taxa or more characters revisited: combining data from nuclear protein-encoding genes for phylogenetic analysis of Noctuoidea (Insecta: Lepidoptera). Systematic Biology 49, 202224.Google Scholar
Monteiro, A. & Pierce, N.E. (2001) Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1α gene sequences. Molecular Phylogenetics and Evolution 18, 264281.Google Scholar
Morinaka, S., Miyata, T. & Tanaka, K. (2002) Molecular phylogeny of the Eichhorni group of Delias Hübner, 1819 (Lepidoptera: Pieridae). Molecular Phylogenetics and Evolution 23, 276287.CrossRefGoogle ScholarPubMed
Nakajima, H. (1970) A contribution to the knowledge of the immature stages of Drepanidae occurring in Japan. Tinea 8, 167184.Google Scholar
Nakamura, M. (1981) Key to the classification of the Japanese lepidopterous pupae. Tyô to Ga 32, 112.Google Scholar
Posada, D. & Crandall, K.A. (1998) MODELTEST, testing the model of DNA substitution. Bioinformatics 14, 817818.Google Scholar
Reed, R.D. & Sperling, F.A.H. (1999) Interaction of process partitions in phylogenetic analysis: an example from the swallowtail butterfly genus Papilio. Molecular Biology and Evolution 16, 286297.CrossRefGoogle ScholarPubMed
Reeder, T.W. (2003) A phylogeny of the Australian Sphenomorphus group (Scincidae: Squamata) and the phylogenetic placement of the crocodile skinks (Tribolonotus): Bayesian approaches to assessing congruence and obtaining confidence in maximum likelihood inferred relationships. Molecular Phylogenetics and Evolution 27, 384397.Google Scholar
Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.Google Scholar
Ros, V.I.D. & Breeuwer, J.A.J. (2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Experimental and Applied Acarology 42, 239262.CrossRefGoogle ScholarPubMed
Sanders, K.L., Malhotra, A. & Thorpe, R.S. (2006) Combining molecular, morphological and ecological data to infer species boundaries in a cryptic tropical pitviper. Biological Journal of the Linnean Society 87, 343364.Google Scholar
Scoble, M.J. (1992) The Lepidoptera, Form, Function and Diversity. xi+404 pp. Oxford, UK, Oxford University Press.Google Scholar
Scoble, M.J. & Edwards, E.D. (1988) Hypsidia Rothschild: a review and a reassessment (Lepidoptera: Drepanoidea, Drepanidae). Entomologica Scandinavica 18, 333353.Google Scholar
Simon, C., Fraiti, F., Beckenbach, A., Crespi, B.J., Liu, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.Google Scholar
Smetacek, P. (2002) Notes on new records of hooktip moths, Lepidoptera: Drepanidae, from the Kumaon and Garhwal Himalaya. Bombay Natural History Society 99, 446454.Google Scholar
Söller, R., Wohltmann, A., Witte, H. & Blohm, D. (2001) Phylogenetic relationships within terrestrial mites (Acari: Prostigmata, Parasitengona) inferred from comparative DNA sequence analysis of the mitochondrial cytochrome oxidase subunit I gene. Molecular Phylogenetics and Evolution 18, 4753.Google Scholar
Sperling, F.A.H. (2003) Butterfly molecular systematics: from species definitions to higher-level phylogenies. pp. 431458 in Boggs, C.L., Watt, W.B. & Ehrlich, P.R. (Eds) Butterflies: Ecology and Evolution Taking Flight. Chicago, IL, University of Chicago Press.Google Scholar
Swofford, D.L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sunderland, Massachusetts, Sinauer Associates.Google Scholar
Tamura, K. & Nei, M. (1993) Estimation of the number nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512526.Google Scholar
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.CrossRefGoogle ScholarPubMed
Wahlberg, N. & Nylin, S. (2003) Morphology versus molecules: resolution of the positions of Nymphalis, Polygonia, and related genera (Lepidoptera: Nymphalidae). Cladistics 19, 213223.Google Scholar
Wahlberg, N. & Wheat, C.W. (2008) Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of lepidoptera. Systematic Biology 57, 231242.CrossRefGoogle ScholarPubMed
Wares, J.P. (2001) Patterns of speciation inferred from mitochondrial DNA in North American Chthamalus (Cirripedia: Balanomorpha: Chthamaloidea). Molecular Phylogenetics and Evolution 18, 104116.CrossRefGoogle ScholarPubMed
Watson, A. (1965) A revision of the Ethiopian Drepanidae (Lepidoptera). Bulletin of the British Museum (Natural History: Entomology) Supplement 3, 1178.Google Scholar
Watson, A. (1967) A Survey of the extra-Ethiopian Oretinae (Lepidoptera: Drepanidae). Bulletin of the British Museum (Natural History: Entomology) 19, 149221.Google Scholar
Wilkinson, C. (1972) The Drepanidae of Nepal (Lepidoptera). Khumbu Himal, Ergebn. Forsch. Unternehmens Nepal Himalaya 4, 157332.Google Scholar
Xia, X. & Xie, Z. (2001) DAMBE: Data analysis in molecular biology and evolution. Journal of Heredity 92, 371373.Google Scholar
Xue, D.Y. & Zhu, H.F. (1999) Fauna Sinica Insecta. Vol. 15. Lepidoptera: Geometridae: Larentiinae. 1099 pp. Beijing, China, Science Press.Google Scholar
Yamamoto, S. & Sota, T. (2007) Phylogeny of the Geometridae and the evolution of winter moths inferred from a simultaneous analysis of mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution 44, 711723.CrossRefGoogle ScholarPubMed
Young, C.J. (2006) Molecular relationships of the Australian Ennominae (Lepidoptera: Geometridae) and implications for the phylogeny of the Geometridae from molecular and morphological data. Zootaxa 1264, 1147.Google Scholar
Zakharov, E.V., Caterino, M.S. & Sperling, F.A.H. (2004) Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Systematic Biology 53, 193215.CrossRefGoogle ScholarPubMed
Zhang, M., Cao, T.W., Zhang, R., Guo, Y.P., Duan, Y.H. & Ma, E.B. (2007) Phylogeny of Apaturinae butterflies (Lepidoptera: Nymphalidae) based on mitochondrial cytochrome oxidase I gene. Journal of Genetics and Genomics 34, 812823.CrossRefGoogle ScholarPubMed
Zhu, H.F. & Wang, L.Y. (1991) Fauna Sinica Insecta. Vol. 3. Lepidoptera: Cyclidiidae, Drepanidae. 269 pp. Beijing, China, Science Press.Google Scholar