Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T03:41:55.787Z Has data issue: false hasContentIssue false

Molecular study of Stenoponia tripectinata tripectinata (Siphonaptera: Ctenophthalmidae: Stenoponiinae) from the Canary Islands: taxonomy and phylogeny

Published online by Cambridge University Press:  18 August 2015

A. Zurita
Affiliation:
Department of Microbiology and Parasitology. Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain
R. Callejón
Affiliation:
Department of Microbiology and Parasitology. Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain
M. De Rojas
Affiliation:
Department of Microbiology and Parasitology. Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain
M.S. Gómez López*
Affiliation:
Department of Microbiology and Parasitology. Faculty of Pharmacy, University of Barcelona, Avda, Joan XXIII, 08028 Barcelona, Spain
C. Cutillas*
Affiliation:
Department of Microbiology and Parasitology. Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain
*
*Author for correspondence Phone: +34 95 4556773 Fax: +34 95 4628162 E-mail: [email protected]
*Author for correspondence Phone: +34 95 4556773 Fax: +34 95 4628162 E-mail: [email protected]

Abstract

In the present work, we carried out a comparative molecular study of Stenoponia tripectinata tripectinata isolated from Mus musculus from the Canary Islands, Spain. The Internal Transcribed Spacers 1 and 2 (ITS1, ITS2) and 18S ribosomal RNA partial gene and cytochrome c-oxidase 1 (cox1) mitochondrial DNA partial gene sequences of this subspecies were determined to clarify the taxonomic status of this subspecies and to assess inter-population variation and inter-specific sequence differences. In addition, we have carried out a comparative phylogenetic study with other species of fleas using Bayesian, Maximum Parsimony, Maximum Likelihood and Neighbor-Joining analysis. A geographical signal was detected between the cox1 partial gene sequences of S. t. tripectinata isolated from M. musculus from different islands and those isolated from Apodemus sylvaticus from the Iberian Peninsula. Our results assess the monophyletic origin of Stenoponiinae and a different genetic lineage from Ctenophthalmidae. Thus, the elevation of subfamily Stenoponiinae to family level (Stenoponiidae) is suggested.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, R. (2005) Relationship host-parasite in fleas (Insecta: Siphonaptera) and rodents (Mammalia: Rodentia) from Querétaro state, México. Folia Entomologica Mexicana 44, 3747.Google Scholar
Ballard, J.W.O. & Whitlock, M.C. (2004) The incomplete natural history of mitochondria. Molecular Ecology 13, 729744.Google Scholar
Bargues, M.D., Klisiowicz, D.R., Panzera, F., Noireau, F., Marcilla, A., Perez, R., Rojas, M.G., O'Connor, J.E., Gonzalez-Candelas, F., Galvão, C., Jurberg, J., Carcavallo, R.U., Dujardin, J.P. & Mas-Coma, S. (2006) Origin and phylogeography of the Chagas disease main vector Triatoma infestans based on nuclear rDNA sequences and genome size. Infection, Genetics and Evolution 6, 4662.Google Scholar
Beaucournu, J.C. & Launay, H. (1990) Les Puces (Siphonaptera) de France et du Bassin Méditerranéen Occidental. Faune de France, 76, Paris, Fédération Française des Sociétés de Sciences Naturelles, p. 548.Google Scholar
Bitam, I., Dittmar, K., Parola, P., Whiting, M.F. & Raoult, D. (2010) Fleas and flea-borne diseases. International Journal of Infectious Diseases 14, 667676.Google Scholar
Cutillas, C., Callejón, R., de Rojas, M., Tewes, B., Ubeda, J.M., Ariza, C. & Guevara, D.C. (2009) Trichuris suis and Trichuris trichiura are different nematode species. Acta Tropica 111, 299307.CrossRefGoogle ScholarPubMed
De Rojas, M., Úbeda, J.M., Cutillas, C., Mora, D., Ariza, C. & Guevara, D.C. (2007) Utility of ITS1–5.8S-ITS2 and 16S mitochondrial DNA sequences for species identification and phylogenetic inference within the genus Rhinonyssus: the Rhinonyssus coniventris complex. Parasitology Research 100, 10411046.Google Scholar
Dietzen, C., Voigt, C., Wink, M., Gahr, M. & Leitner, S. (2006) Phylogeography of island Canary (Serinus canaria) populations. Journal of Ornithology 147, 485494.CrossRefGoogle Scholar
Dover, G.A. (2002) Molecular drive. Trends Genetics 18, 587589.CrossRefGoogle ScholarPubMed
Dunnet, G.M. & Mardon, D.K. (1999) Siphonaptera, the Insects of Australia: a Textbook for Students and Research Workers. 2nd edn. Melbourne, Csiro and Melbourne University Press, pp. 125140.Google Scholar
Essig, A., Rinder, H., Gothe, R. & Zahler, M. (1999) Genetic differentiation of mites of the genus Chorioptes (Acari: Psoroptidae). Experimental and Applied Acarology 23, 309–18.Google Scholar
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology Biotechnology 3, 294299.Google Scholar
Gasser, R.B., Nansen, P. & Guldberg, P. (1996) Fingerprinting sequence variation in ribosomal DNA of parasites by DGGE. Molecular and Cellular Probes 10, 99105.Google Scholar
Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Cywinska, A., Ball, S.L. & DeWaard, J.R. (2003) Biological identifications of birds through DNA barcodes. Proceedings of the Royal Society B 270, 313321.Google Scholar
Hopkins, G.H.E. & Rothschild, M. (1962) An Illustrated Catalogue of the Rothschild Collection of Fleas (Siphonaptera) in the British Museum (Natural History). Vol. 3. Hystrichopsyllidae, London, Trustees of the British Museum (Natural History).Google Scholar
Huelsenbeck, J.P. & Rannala, B. (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276, 227232.Google Scholar
Hurst, G.D.D. & Jiggins, F.M. (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society B 272, 15251534.Google Scholar
Jordan, K. (1958) A contribution to the taxonomy of Stenoponia J. & R. (1911), a genus of Palaeartic and Neartic fleas. British Museum (Natural History) 6, 169202.Google Scholar
Kaewmongkol, G., Kaewmongkol, S., Mclnnes, L.M., Burmej, H., Bennet, M.D., Adams, P.J., Ryan, U., Irwin, P.J. & Fenwick, S.G. (2011) Genetic characterization of flea derived Bartonella species from native animals in Australia suggest host-parasite co evolution. Infection, Genetics and Evolution 11, 18681872.Google Scholar
Larkin, M.A., Blackshields, G. & Brown, N.P. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.Google Scholar
Lewis, R.E. (1993a) Notes on the geographical distribution and host preferences in the order Siphonaptera. Part 8. New taxa described between 1984 and 1990, with a current classification of the order. Entomological Society of America 30, 239256.Google Scholar
Lewis, R.E. (1993b) Fleas (Siphonaptera). pp. 529575 in Lane, R.P. & Crosskey, R.W. (Eds) Medical Insects and Arachnids. London, Chapman and Hall.Google Scholar
Lewis, R.E. (1998) Résumé of the Siphonaptera (Insecta) of the World. Journal of Medical Entomology 35, 377389.Google Scholar
Marcilla, A., Bargues, M.D., Abad-Franch, F., Panzera, F., Carcavallo, R.U., Noireau, F., Galvão, C., Jurberg, J., Miles, M.A., Dujardin, J.P. & Mas-Coma, S. (2002) Nuclear rDNA ITS-2 sequences reveal polyphyly of Panstrongylus species (Hemiptera: Reduviidae: Triatominae), vectors of Trypanosoma cruzi . Infection, Genetics and Evolution 1, 225–35.Google Scholar
Marrugal, A., Callejón, R., de Rojas, M., Halajian, A. & Cutillas, C. (2013) Morphological, biometrical and molecular characterization of Ctenocephalides felis and Ctenocephalides canis isolated from dogs from different geographical regions. Parasitology Research 112, 22892298.Google Scholar
Medvedev, S.G. (1998) Classification on fleas (Order Siphonaptera) and its theoretical foundations. Entomological Review 78, 10801093.Google Scholar
Monje, L.D., Quiroga, M., Manzoli, D., Couri, M.S., Silvestri, L., Venzal, J.M., Cuervo, P. & Beldomenico, P.M. (2013) Sequence analysis of the internal transcribed spacer 2 (ITS2) from Philornis seguyi (García, 1952) and Philornis torquans (Nielsen, 1913) (Diptera: Muscidae). Systematic Parasitology 86, 4153.Google Scholar
Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.Google Scholar
Posada, D. & Buckley, T.R. (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793808.Google Scholar
Sánchez, S. & Gómez, M.S. (2012) Presence of Stenoponia tripectinata (Tiraboschi, 1902) (Siphonaptera, Ctenophtalmidae) in murine (Rodentia) from the Canary Islands. Acta Parasitologica 57, 190193.Google Scholar
Smith, G.P. (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191, 528535.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
Vobis, M., D'Haese, J., Mehlhorn, H., Mencke, N., Blagburn, B.L., Bond, R., Denholm, I., Dryden, M.W., Payne, P., Rust, M.K., Schroeder, I., Vaughn, M.B. & Bledsoe, D. (2004) Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers. Parasitology Research 94, 219226.Google Scholar
Whiting, M.F. (2002) Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica scripta 31, 93104.Google Scholar
Whiting, M.F., Whiting, A.S., Hastriter, M.W. & Dittmar, K. (2008) A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics 24, 677707.CrossRefGoogle Scholar
Zagoskin, M.V., Lazareva, V.I., Grishanin, A.K. & Mukha, D.V. (2014) Phylogenetic information content of Copepoda ribosomal DNA repeat units: ITS1 and ITS2 impact. BioMed Research International 2014, 926342. doi:10.1155/2014/926342.Google Scholar
Zaidi, F., Wei, S.J., Shi, M. & Chen, X.X. (2011) Utility of multi-gene loci for forensic species diagnosis of blowflies. Journal of Insect Science 11, 59.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zurita supplementary material

Appendix 1

Download Zurita supplementary material(File)
File 21.4 KB
Supplementary material: File

Zurita supplementary material

Appendix 2

Download Zurita supplementary material(File)
File 18.2 KB
Supplementary material: File

Zurita supplementary material

Appendix 3

Download Zurita supplementary material(File)
File 16.4 KB