Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T01:12:54.090Z Has data issue: false hasContentIssue false

Molecular screening and predation evaluation of the key predators of Conopomorpha sinensis Bradley (Lepidoptera: Gracilariidae) in litchi orchards

Published online by Cambridge University Press:  09 January 2014

X. Meng
Affiliation:
Guangdong Entomological Institute, Research Center of Ecological Pest Management, Guangzhou 510260, China Guangdong Academy of Sciences, Guangzhou 510070, China
G. C. Ouyang
Affiliation:
Guangdong Entomological Institute, Research Center of Ecological Pest Management, Guangzhou 510260, China
H. Liu
Affiliation:
Guangdong Entomological Institute, Research Center of Ecological Pest Management, Guangzhou 510260, China
B. H. Hou
Affiliation:
Guangdong Entomological Institute, Research Center of Ecological Pest Management, Guangzhou 510260, China
S. S. Huang
Affiliation:
South China Agricultural University (SCAU), Guangzhou 510642, China
M. F. Guo*
Affiliation:
Guangdong Entomological Institute, Research Center of Ecological Pest Management, Guangzhou 510260, China
*
*Author for correspondence Fax: +8620 84199129 E-mail: [email protected]

Abstract

Conopomorpha sinensis Bradley (Lepidoptera: Gracilariidae) is one of the major fruit borer pests of litchi and longan in Southern China. Although chemical control is effective, alternative, biorational strategies are preferable, and should be developed. Predators play an important role in the biological control of agricultural pests, but an accurate method for the evaluation of predation in agriculture has not yet been developed. Here, we report a new, specific primer pair to amplify a C. sinensis cytochrome c oxidase subunit I (COI) sequence fragment that can be used to detect consumption of C. sinensis by its predators. C. sinensis DNA was found in several arthropods collected in the field, including the important C. sinensis predators Menochilus sexmaculata (Coccinellidae), Leucauge magnifica (Tetragnathidae), Propylea japonica (Coccinellidae), and Oxyopes sertatus (Oxyopidae). The detection rates of C. sinensis COI DNA in these predators were 39.3, 36.4, 27.3, and 27.2%, respectively. Laboratory consumption and hunting capacity analysis of M. sexmaculata and P. japonica adults indicated that they exhibit a Holling type II functional response on C. sinensis eggs under field temperatures. A polymerase chain reaction digestion analysis of M. sexmaculata and P. japonica adults after consumption of a single C. sinensis egg indicated that positive detection decreased with the extension of digestion time, and estimated prey DNA half-lives were 16.3 h in M. sexmaculata and 6.0 h in P. japonica. These data serve to characterize two major predators of C. sinensis with potential for biological control of C. sinensis in litchi orchards.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Admassu, B., Juen, A. & Traugott, M. (2006) Earthworm primers for DNA-based gut content analysis and their cross-reactivity in a multi-species system. Soil Biology and Biochemistry 38, 13081315.CrossRefGoogle Scholar
Agustí, N., De Vicente, M.C. & Gabarra, R. (1999) Development of sequence amplified characterized region (SCAR) markers of Helicoverpa armigera: a new polymerase chain reaction-based technique for predator gut analysis. Molecular Ecology 8, 14671474.Google Scholar
Agustí, N., De Vicente, M.C. & Gabarra, R. (2000) Developing SCAR markers to study predation on Trialeurodes vaporariorum . Insect Molecular Biology 9, 263268.Google Scholar
Agustí, N., Shayler, S.P., Harwood, J.D., Vaughan, I.P., Sunderland, K.D. & Symondson, W.O.C. (2003) Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. Molecular Ecology 12, 34673475.Google Scholar
An, R.S., Tan, S.J. & Chen, X.F. (2002) Improvement in grinding tissue during extracting DNA from small insects. Entomological Knowledge 39, 311312.Google Scholar
Chen, B.X., Dong, Y.Z. & Lu, H. (2010) Development of Kelü™ 15% alphacypermethrin· chlorpyrifos EC and its field trial to Conopomorpha sinensis . Guangdong Agricultural Sciences 7, 9799.Google Scholar
Chen, Y., Giles, K.L., Payton, M.E. & Greenstone, M.H. (2000) Identifying key cereal aphid predators by molecular gut analysis. Molecular Ecology 9, 18871898.Google Scholar
Crocker, R.L. & Whitcomb, W.H. (1980) Feeding niches of the big-eyed bugs Geocoris bullatus, G. punctipes, and G. uliginosus (Hemiptera: Lygaeidae: Geocorinae). Environmental Entomology 9, 508513.Google Scholar
Edgecombe, G.D. & Giribet, G. (2004) Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidase subunit I) to the phylogeny of centipedes (Myriapoda: Chilopoda): an analysis of morphology and four molecular loci. Journal of Zoological Systematics and Evolutionary Research 42, 89134.Google Scholar
Foltan, P., Sheppard, S., Konvicka, M. & Symondson, W.O.C. (2005) The significance of facultative scavenging in generalist predator nutrition: detecting decayed prey in the guts of predators using PCR. Molecular Ecology 14, 41474158.Google Scholar
Gao, H.X., Han, L.L., Zhao, K.J., Fan, D. & Liu, J. (2006 a) Cloning and sequencing of cytochrome oxidase II gene of Aphis glycines and its application in detecting natural enemies. Acta Entomologica Sinica 49, 754758.Google Scholar
Gao, Z.Z., Wu, W.J. & Liang, G.W. (2006 b) Observation of the antennal sensilla of Campylomma chinensis (Hemiptera: Miridae) by Environmental Scanning Electron Microscope. Journal of South China Agricultural University 27, 1820.Google Scholar
Hagler, J.R. & Naranjo, S.E. (1997) Measuring the sensitivity of an indirect predator gut content ELISA: detectability of prey remains in relation to predator species, temperature, time, and meal size. Biological Control 9, 112119.CrossRefGoogle Scholar
Harwood, J.D. & Obrycki, J.J. (2005) Quantifying aphid predation rates of generalist predators in the field. European Journal of Entomology 102, 335350.Google Scholar
Hengeveld, R. (1980) Qualitative and quantitative aspects of the food of ground beetles (Coleoptera, Carabidae): a review. Netherlands Journal of Zoology 30, 555563.CrossRefGoogle Scholar
Hoogendoorn, M. & Heimpel, G.E. (2001) PCR-based gut content analysis of insect predators: using ribosomal ITS-1 fragments from prey to estimate predation frequency. Molecular Ecology 10, 20592067.Google Scholar
Juliano, S.A., Scheiner, S.M. & Gurevitch, J. (2001) Design and Analysis of Ecological Experiments. pp. 178198. NY, CRC Press, Oxford University Press.Google Scholar
King, R.A., Read, D.S., Traugott, M. & Symondson, W.O.C. (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Molecular Ecology 17, 947963.Google Scholar
Kuusk, A.K., Cassel-Lundhagen, A., Kvarnheden, A. & Ekbom, B. (2008) Tracking aphid predation by lycosid spiders in spring-sown cereals using PCR-based gut-content analysis. Basic and Applied Ecology 9, 718725.CrossRefGoogle Scholar
Legaspi, J.C., Legaspi, B., Meagher, R. & Ciomperlik, M. (1996) Evaluation of Serangium parcesetosum (Coleoptera: Coccinellidae) as a biological control agent of the silverleaf whitefly (Homoptera: Aleyrodidae). Environmental Entomology 25, 14211427.Google Scholar
Li, K., Zhao, L.Y., Tian, J.C., Wang, H., Ye, G.Y. & Xiao, J.H. (2010) Research progress in DNA-based approach tracking trophic links. Acta Phytophylacica Sinica 37, 8388.Google Scholar
Luff, M.L. (1983) The potential of predators for pest control. Agriculture, Ecosystems and Environment 10, 159181.Google Scholar
Monzó, C., Sabater-Muñoz, B., Urbaneja, A. & Castañera, P. (2011) The ground beetle Pseudophonus rufipes revealed as predator of Ceratitis capitata in citrus orchards. Biological Control 56, 1721.Google Scholar
Pop, A.A., Wink, M. & Pop, V.V. (2003) Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae). Pedobiologia 47, 428433.Google Scholar
Rogers, D. (1972) Random search and insect population models. Journal of Animal Ecology 41, 369383.Google Scholar
Sheppard, S.K., Henneman, M.L., Memmott, J. & Symondson, W.O.C. (2004) Infiltration by alien predators into invertebrate food webs in Hawaii: a molecular approach. Molecular Ecology 13, 20772088.CrossRefGoogle ScholarPubMed
Shin, S.G., Jung, S.H., Lee, H.S. & Lee, S.H. (2013) Molecular identification of dipteran pests (Diptera: Sciaroidea) from shiitake mushroom. Molecular Ecology Resources 13, 200209.CrossRefGoogle ScholarPubMed
Sint, D., Raso, L., Kaufmann, R. & Traugott, M. (2011) Optimizing methods for PCR-based analysis of predation. Molecular Ecology Resources 11, 795801.Google Scholar
Song, X.Y., Cong, B., Qian, H.T. & Dong, H. (2008) Identification of the key predators of Aphis glycines Matsumura (Homoptera: Aphididae) using COI gene markers. Scientia Agricultura Sinica 41, 28812888.Google Scholar
Sunderland, K.D. (1996) Progress in quantifying predation using antibody techniques. pp. 419455 in Symondson, W.O.C. (Ed.) The Ecology of Agricultural Pests. London, UK, Chapman, Hall Ltd Publishers.Google Scholar
Sunderland, K.D. (2002) Invertebrate pest control by carabids. pp. 165214 in Holland, J.M. (Ed.) The Agroecology of Carabid Beetles. Hampshire, USA, Intercept Ltd, Andover Publishers.Google Scholar
Symondson, W.O.C. (2002 a) Molecular identification of prey in predator diets. Molecular Ecology 11, 627641.Google Scholar
Symondson, W.O.C., Glen, D.M., Wiltshire, C., Langdon, C. & Liddell, J. (1996) Effects of cultivation techniques and methods of straw disposal on predation by Pterostichus melanarius (Coleoptera: Carabidae) upon slugs (Gastropoda: Pulmonata) in an arable field. Journal of Applied Ecology 25, 741753.Google Scholar
Symondson, W.O.C., Glen, D.M., Ives, A.R., Langdon, C.J. & Wiltshire, C.W. (2002 b) Dynamics of the relationship between a generalist predator and slugs over five years. Ecology 83, 137147.Google Scholar
Thanh, V.N., Hai, D.A. & Lachance, M.A. (2006) Cryptococcus bestiolae and Cryptococcus dejecticola, two new yeast species isolated from frass of the litchi fruit borer Conopomorpha sinensis Bradley. FEMS Yeast Research 6, 298304.CrossRefGoogle ScholarPubMed
Wang, S.S., Huang, S.S., Liang, G.W. & Zeng, L. (2008) The rearing and the laboratory population life table of litchi fruit borer (Conopomorpha sinensis Bradley). Acta Ecologica Sinica 28, 08360841.Google Scholar
Winson, T., Liang, G.W., Liu, W.H. & Chen, Q.X. (2007 a) The new record of selecting effectives pieces of egg Parasitoids of Conopomorha sinensis Bradley (Lepidoptera: Graillariidae). Natural Enemies of Insects 29, 610.Google Scholar
Winson, T., You, S.L. & Liang, G.W. (2007 b) A new species of Glyptapanteles Ashmead Foerster attacking litch fruit borer Conopomorpha sinensis Bradley (Hymenoptera: Braconidae). Journal of Hunan Agricultural University 33, 6567.Google Scholar
Wu, Z.Q., Chen, X.W., Xu, Z.J. & Zhu, G.Q. (1999) Camtylommachinensis: a new predator of egg of main insect pests of longan. Journal of Fujian Agricultural University 28, 382383.Google Scholar
Vucic-Pestic, O., Rall, B.C., Kalinkat, G. & Brose, U. (2010) Allometric functional response model: body masses constrain interaction strengths. Journal of Animal Ecology 79, 249256.Google Scholar
Xiao, Y. & Fadamiro, H.Y. (2010) Functional responses and prey-stage preferences of three species of predacious mites (Acari: Phytoseiidae) on citrus red mite. Panonychus citri (Acari: Tetranychidae). Biological Control 53, 345352.Google Scholar
Yao, Z.W. & Liu, S.K. (1990) Two Gracillariid insects attacking litchi and longan. Acta Entomologica Sinica 33, 207212.Google Scholar
Yi, G.J., Wang, X.B. & Huo, H.Q. (2002) The litchi industry status in China and its export strategies. Journal of Fruit Science 19, 188190.Google Scholar
Zaidi, R.H., Jaal, Z., Hawkes, N.J., Hemingway, J. & Symondson, W.O.C. (1999) Can multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Molecular Ecology 8, 20812087.Google Scholar