Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T20:06:48.643Z Has data issue: false hasContentIssue false

Molecular identification of Epitrix potato flea beetles (Coleoptera: Chrysomelidae) in Europe and North America

Published online by Cambridge University Press:  01 March 2013

Jean-François Germain
Affiliation:
ANSES – Laboratoire de la Santé des Végétaux, unité entomologie et plantes invasives, CBGP, Campus international de Baillarguet, CS 30016, 34988 Montferrier-sur Lez, France
Catherine Chatot
Affiliation:
GERMICOPA R&D, Kerguivarc'h, 29520 Chateauneuf du Faou, France
Isabelle Meusnier
Affiliation:
INRA, UMR1062 CBGP, F-34988 Montferrier-sur-Lez, France
Emmanuelle Artige
Affiliation:
INRA, UMR1062 CBGP, F-34988 Montferrier-sur-Lez, France
Jean-Yves Rasplus
Affiliation:
INRA, UMR1062 CBGP, F-34988 Montferrier-sur-Lez, France
Astrid Cruaud*
Affiliation:
INRA, UMR1062 CBGP, F-34988 Montferrier-sur-Lez, France
*
* Author for correspondence Phone: +(33).4.99.62.33.25 Fax: + (33).4.99.62.33.45 E-mail: [email protected]

Abstract

Epitrix species (Coleoptera: Chrysomelidae) feed mostly on plants from the family Solanaceae and some of them are major pests of potato crops. All Epitrix species are morphologically highly similar, which makes them difficult to identify and limits their study and management. Identification of species is mostly based on the observation of the genitalia and requires a high level of expertise. Here, we propose a tool to reliably identify all developmental stages of the most economically important Epitrix species feeding on potato in Europe and North America (Epitrix cucumeris, Epitrix similaris, Epitrix tuberis, Epitrix subcrinita and Epitrix hirtipennis). We first sequenced two DNA markers (mitochondrial cytochrome c oxidase I (COI) and nuclear internal transcribed spacer 2 (ITS2)) to test their effectiveness in differentiating among six Epitrix species (126 specimens). Morphospecies of Epitrix were well-differentiated by both DNA barcodes and no mitochondrial introgression was detected. Then, we developed an RFLP-based diagnostic method and showed that unambiguous species discrimination can be achieved by using the sole restriction enzyme TaqI on COI polymerase chain reaction products. The tool proposed here should improve our knowledge about Epitrix species biology, distribution and host range, three capacities that are particularly important in the detection and management of these pest species. Specifically, this tool should help prevent the introduction of E. tuberis and E. subcrinita in Europe and limit the spread of the recently introduced E. cucumeris and E. similaris, with minimal disruption to Solanaceae trade.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, K.F. & Ball, S.L. (2005) DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society of London B Biological Sciences 360, 18131823.Google Scholar
Boavida, C. & Germain, J.F. (2009) Identification and pest status of two exotic flea beetle species newly introduced in Portugal: Epitrix similaris Gentner and Epitrix cucumeris (Harris). Bulletin OEPP/EPPO Bulletin 39, 501508.Google Scholar
Bonants, P., Groenewald, E., Rasplus, J.Y., Maes, M., de Vos, P., Frey, J., Boonham, N., Nicolaisen, M., Bertacini, A., Robert, V., Barker, I., Kox, L., Ravnikar, M., Tomankova, K., Caffier, D., Li, D., Armstrong, K., Freitas-Astua, J., Stefani, E., Cubero, J. & Mostert, L. (2010) QBOL: a new EU project focusing on DNA barcoding of quarantine organisms. EPPO Bulletin 40, 3033.Google Scholar
Campbell, L.A., Clark, T.L., Clark, P.L., Meinke, L.J. & Foster, J.E. (2011) Field introgression of Diabrotica barberi and Diabrotica longicornis (Coleoptera: Chrysomelidae) based on genetic and morphological characters. Annals of the Entomological Society of America 104, 13801391.CrossRefGoogle Scholar
Cruaud, A., Jabbour-Zahab, R., Genson, G., Cruaud, C., Couloux, A., Kjellberg, F., van Noort, S. & Rasplus, J.-Y. (2010) Laying the foundations for a new classification of Agaonidae (Hymenoptera: Chalcidoidea), a multilocus phylogenetic approach. Cladistics 26, 359387.Google Scholar
Cusson, M., Vernon, R.S. & Roitberg, B.D. (1990) A sequential sampling plan for adult tuber flea beetles (Epitrix tuberis Gentner): dealing with ‘edge effects’. Canadian Entomologist 122, 537546.Google Scholar
de Waard, J.R., Mitchell, A., Keena, M.A., Gopurenko, D., Boykin, L.M., Armstrong, K.F., Pogue, M.G., Lima, J., Floyd, R., Hanner, R.H. & Humble, L.M. (2010) Towards a global barcode library for Lymantria (Lepidoptera: Lymantriinae) tussock moths of biosecurity concern. PLoS ONE 5, e14280.CrossRefGoogle ScholarPubMed
Doeberl, M. (2000) Contribution to the knowledge of the genus Epitrix Foudras, 1860 in the Palearctic region (Coleoptera: Chrysomelidae: Alticinae). Mitteilungen des Internationaler Entomologischer Verein 25, 123.Google Scholar
Doguet, S. (1994) Coleoptera Chrysomelidae volume 2 Alticinae Faune de France 80. Fédération Française des Sociétés de Sciences Naturelles, Paris, France.Google Scholar
Fera (2012) Exploring the economic consequences of Epitrix spp. establishing across main crop potato production in England and options to reduce the likelihood of their introduction. Available online at http://www.fera.defra.gov.uk/plants/plantHealth/pestsDiseases/ Google Scholar
Floyd, R., Lima, J., deWaard, J.R., Humble, L.R. & Hanner, R.H. (2010) Common goals: incorporating DNA barcoding into international protocols for identification of arthropod pests. Biological Invasions 12, 29472954.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google Scholar
Frezal, L. & Leblois, R. (2008) Four years of DNA barcoding: current advances and prospects. Infection Genetics and Evolution 8, 727736.Google Scholar
Funk, D.J. & Omland, K.E. (2003) Species level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology and Systematics 34, 397423.Google Scholar
Gentner, L.G. (1944) The black flea beetles of the genus Epitrix commonly identified as cucumeris (Harris) (Coleoptera: Chrysomelidae). Proceedings of the Entomological Society of Washington 46, 137149.Google Scholar
Gomez-Zurita, J. & Vogler, A.P. (2006) Testing introgressive hybridization hypotheses using statistical network analysis of nuclear and cytoplasmic haplotypes in the leaf beetle Timarcha goettingensis species complex. Journal of Molecular Evolution 62, 421433.CrossRefGoogle ScholarPubMed
Gu, X. (1995) Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Molecular Biology and Evolution 12, 546557.Google ScholarPubMed
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hebert, P.D.N., Cywinska, A., Shelley, L.B. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B 270, 313321.Google Scholar
Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S. & Francis, C.M. (2004) Identification of birds through DNA barcodes. PLoS Biology 2, 16571663.CrossRefGoogle ScholarPubMed
Hoy, C.W., Boiteau, G., Alyokhin, A., Dively, G. & Alvarez, J.M. (2008) Managing insect and mite pests. in Johnson, D.A. (Ed.) Potato Health Management. The American Phytopathological Society, St. Paul, 133147.Google Scholar
Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Hebert, P.D.N. (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7, 544548.Google Scholar
Katoh, K., Kuma, K., Toh, H. & Miyata, T. (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33, 511518.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.Google Scholar
Morrison, H.E., Gentner, L.G., Koontz, R.F. & Every, R.W. (1967) The changing role of potato pests attacking potato tubers. American Potato Journal 44, 137144.Google Scholar
Nylander, J.A.A. (2004) MrAIC.pl. Program distributed by the author (Uppsala, Evolutionary Biology Centre, Uppsala University).Google Scholar
OEPP/EPPO (1989) Data sheets on quarantine organisms No. 165. Epitrix tuberis . Bulletin OEPP/EPPO Bulletin 19, 671675.Google Scholar
OEPP/EPPO (2005) Data sheets on quarantine pests. Epitrix cucumeris . Bulletin OEPP/EPPO Bulletin 35, 363364.Google Scholar
OEPP/EPPO (2010a) Data sheets on quarantine pests. Potato Andean latent tymovirus. Available online at http://www.eppo.int/QUARANTINE/virus/Potato_Andean_latent_tymovirus/APLV00_ds.pdf Google Scholar
OEPP/EPPO (2010b) Pest Risk Analysis for Epitrix species damaging potato tubers. Available online at http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm?utm_source=www.eppo.org&utm_medium=int_redirect Google Scholar
OEPP/EPPO (2011) Epitrix cucumeris, E. similaris and E. tuberis . Bulletin OEPP/EPPO Bulletin 41, 369373.Google Scholar
Official Journal of the European Union (2012) Decision (212/270/EU) as regards emergency measures to prevent the introduction into and the spread within the Union of Epitrix cucumeris (Harris), Epitrix similaris (Gentner), Epitrix subcrinita (Lec.) and Epitrix tuberis (Gentner) (notified under document C(2012) 3137). Available online at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:132:FULL:EN:PDF Google Scholar
Schwartzmann, M. (2010) Potato – a world production, a European business. pp. 1116 in Schepers, H.T.A.M. (ed.) Proceedings of the Twelfth Euroblight Workshop. PPO-Special Report 14, Arras, France.Google Scholar
Seeno, T.N. & Andrews, F.G. (1972) Alticinae of California, Part I: Epitrix spp. (Coleoptera: Chrysomelidae). Coleopterists Bulletin 26, 5361.Google Scholar
Stamatakis, A. (2006a). RA × ML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 26882690.Google Scholar
Stamatakis, A. (2006b) Phylogenetic models of rate heterogeneity: a high performance computing perspective. p. 8 in International Parallel and Distributed Processing Symposium (IPDPS 2006). Rhodes Island, Greece.Google Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.Google Scholar
Vreugdenhil, D., Bradshaw, J., Gebhardt, C., Govers, F., MacKerron, D., Taylor, M. & Ross, H. (2007) Potato Biology and Biotechnology: Advances and Perspectives. Elsevier, Oxford, Amsterdam.Google Scholar
Warchalowski, A. (2003) Chrysomelidae. The Leaf-Beetles of Europe and the Mediterranean Area. Natura Optima Dux Foundation, Warszawa.Google Scholar