Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-07T22:56:21.395Z Has data issue: false hasContentIssue false

A molecular framework for the identification of planthopper vectors (Hemiptera: Delphacidae) of central Argentina

Published online by Cambridge University Press:  10 September 2015

E.B. Argüello Caro*
Affiliation:
Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias – Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA). Av. 11 de Septiembre 4755, B° Cárcano, Ciudad de Córdoba. CP X5020ICA, Córdoba, Argentina
A.D. Dumón
Affiliation:
Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias – Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA). Av. 11 de Septiembre 4755, B° Cárcano, Ciudad de Córdoba. CP X5020ICA, Córdoba, Argentina
M.F Mattio
Affiliation:
Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias – Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA). Av. 11 de Septiembre 4755, B° Cárcano, Ciudad de Córdoba. CP X5020ICA, Córdoba, Argentina
V. Alemandri
Affiliation:
Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias – Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA). Av. 11 de Septiembre 4755, B° Cárcano, Ciudad de Córdoba. CP X5020ICA, Córdoba, Argentina
G. Truol
Affiliation:
Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias – Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA). Av. 11 de Septiembre 4755, B° Cárcano, Ciudad de Córdoba. CP X5020ICA, Córdoba, Argentina
*
*Author for correspondence Phone: 54 0351 4973636/4330 Fax: 54 0351 4974343 E-mail: [email protected], [email protected]

Abstract

Planthoppers are important worldwide crop pests as well as vectors of numerous diseases. Different species transmit Mal de Río Cuarto virus, which causes the most economically important corn disease in central Argentina. Epidemiological studies rely on the accurate identification of the species present in the field. Presently, morphological identification of planthoppers requires taxonomic expertise and there are no taxonomic keys for females and nymphs. Nevertheless, no molecular protocols are available for accurate species identification of most frequent delphacid species from central Argentina. In this context, the aim of this study was to evaluate the utility of the cytochrome oxidase I gene (COI) as a DNA barcode and its digestion with restriction enzymes (Restriction Fragment Length Polymorphism, RFLP) for the identification of the most common species of planthoppers in central Argentina. We amplified and sequenced a 843 bp fragment of the COI gene of taxonomically identified specimens and evaluated its use as a DNA barcode. Restriction enzymes were also selected for digesting the COI fragment via RFLP. The high interspecific variability (20.79%; ± 2.32%) and low intraspecific divergence (0.12%; ± 0.17%) observed in the studied species, demonstrate the effectiveness of the COI gene for species identification of major vector delphacids affecting corn crops in Argentina. Moreover, the digestion of this COI gene fragment with Bfa I and Apo I enzymes allows a fast and cost-effective species identification method when numerous specimens need to be processed. Both molecular techniques developed here, allow the accurate identification of planthopper species at regional scale. These new tools would assist traditional identification of these insects, especially for aiding non-experts in morphological taxonomy.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argüello Caro, E.B., Mattio, M.F., Alemandri, V. & Truol, G. (2011) Wolbachia prevalence in Mal de Río Cuarto virus (MRCV) vectors from Argentina. Biocell 35, A116.Google Scholar
Bartlett, C.R. (2014) Delphacid planthoppers of North America. Available online at http://ag.udel.edu/enwc/research/delphacid/index.html.Google Scholar
Bartlett, C.R. & Kunz, G. (2015) A new genus and species of delphacid planthopper (Hemiptera: Fulgoroidea: Delphacidae) from Central America with a preliminary regional species list. Zootaxa 3946, 510518.CrossRefGoogle ScholarPubMed
Behura, S.K. (2006) Molecular marker systems in insects: current trends and future avenues. Molecular Ecology 15, 30873113.CrossRefGoogle ScholarPubMed
Bergsten, J., Bilton, D.T., Fujisawa, T., Elliott, M., Monaghan, M.T., Balke, M., Hendrich, L., Geijer, J., Herrmann, J., Foster, G.N., Ribera, I., Nilsson, A., Barraclough, T.G. & Vogler, A.P. (2012) The effect of geographical scale of sampling on DNA barcoding. Systematic Biology 61, 851860.CrossRefGoogle ScholarPubMed
Boito, G. & Ornaghi, J. (2008) Rol de los cereales de invierno y su sistema de manejo en la dinámica poblacional de Delphacodes kuscheli, insecto vector del MRCV. Agriscientia 25, 1726.Google Scholar
Contreras Gutiérrez, M.A., Vivero, R.J., Vélez, I.D., Porter, C.H. & Uribe, S. (2014) DNA barcoding for the identification of sand fly species (Diptera, Psychodidae, Phlebotominae) in Colombia. PLoS ONE 9, e85496.CrossRefGoogle ScholarPubMed
Denno, R.F. & Roderick, G.K. (1990) Population biology of planthoppers. Annual Review of Entomology 35, 489520.CrossRefGoogle Scholar
Dijkstra, E., Rubio, J. & Rory, P. (2003) Resolving relationships over a wide taxonomic range in Delphacidae (Homoptera) using the COI gene. Systematic Entomology 28, 89100.CrossRefGoogle Scholar
Doyle, J.J. & Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus 12, 1315.Google Scholar
Garat, O., Trumper, E.V., Gorla, D.E. & Perez Harguindeguy, N. (1999) Spatial pattern of the Río Cuarto corn desease vector, Delphacodes kuscheli Fennah (Hom., Delphacidae), in oat fields in Argentina and design of sampling plans. Journal of Applied Entomology 123, 121126.CrossRefGoogle Scholar
Germain, J.F., Chatot, C., Meusnier, I., Artige, E., Rasplus, J.Y. & Cruaud, A. (2013) Molecular identification of Epitrix potato flea beetles (Coleoptera: Chrysomelidae) in Europe and North America. Bulletin of Entomological Research 103, 354362.CrossRefGoogle ScholarPubMed
Gopurenko, D., Fletcher, M., Löcker, H. & Mitchell, A. (2013) Morphological and DNA barcode species identifications of leafhoppers, planthoppers and treehoppers (Hemiptera: Auchenorrhyncha) at Barrow Island. Records of the Western Australian Museum 83, 253285.CrossRefGoogle Scholar
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London – Biological Sciences 270, 313321.CrossRefGoogle ScholarPubMed
Hurst, G.D. & Jiggins, F.M. (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society Biological Sciences Series B 272, 15251534.Google ScholarPubMed
Jinbo, U., Kato, T. & Ito, M. (2011) Current progress in DNA barcoding and future implications for entomology. Entomological Science 14, 107124.CrossRefGoogle Scholar
Laguna, I.G., de Remes Lenicov, A.M.M., Virla, E.G., Avila, A.O., Giménez Pecci, M.P., Herrera, P., Garay, J., Ploper, D. & Mariani, R. (2002) Difusión del virus del Mal de Río Cuarto (MRCV) del maíz, su vector, delfácidos asociados y huéspedes alternativos en la Argentina. Revista de la Sociedad Entomologica Argentina 61, 8797.Google Scholar
Lunt, D.H., Zhang, D.X., Szymura, J.M. & Hewitt, G.M. (1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology 5, 153165.CrossRefGoogle ScholarPubMed
Mattio, M.F., Velazquez, P., Cassol, A., Alemandri, V. & Truol, G. (2005) Toya propinqua Fieber como vector natural del Mal de Río Cuarto (MRCV). Fitopatologia 40, 81.Google Scholar
Mattio, M.F., Cassol, A., de Remes Lenicov, A.M.M. & Truol, G. (2008) Tagosodes orizicolus: nuevo vector potencial del Mal de Río Cuarto virus . Tropical Plant Pathology 33, 237240.CrossRefGoogle Scholar
Meyer, C.P. & Paulay, G. (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, e422.CrossRefGoogle ScholarPubMed
Ming, Q., Wang, A. & Cheng, C. (2014) Molecular identification of Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae) using PCR-RFLP analysis. Journal of Genetics 93, e17e21.Google Scholar
Nagoshi, R.N., Brambila, J. & Meagher, R.L. (2011) Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida. Journal of Insect Science 11, 154.CrossRefGoogle ScholarPubMed
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 18641877.CrossRefGoogle ScholarPubMed
Remes Lenicov, A.M.M. & Virla, E.G. (1999) Delfácidos asociados al cultivo de maíz en la República Argentina (Insecta: Homoptera: Delphacidae). Revista de la Facultad de Agronomía de La Plata 104, 115.Google Scholar
Schroeder, H., Klotzbach, H., Elias, S., Augustin, C. & Pueschel, K. (2003) Use of PCR-RFLP for differentiation of calliphorid larvae (Diptera, Calliphoridae) on human corpses. Forensic Science International 132, 7681.CrossRefGoogle ScholarPubMed
Shoemaker, D.D., Dyer, K.A., Ahrens, M., McAbee, K. & Jaenike, J. (2004) Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 168, 20492058.CrossRefGoogle ScholarPubMed
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Sun, X.J., Xiao, J.H., Cook, J.M., Feng, G. & Huang, D.W. (2011) Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity. BMC Evolutionary Biology 11, 86.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle Scholar
Thyssen, P.T., Lessinger, A.C., Azeredo-Espin, A.M.L. & Linhares, A.X. (2005) The value of PCR-RFLP molecular markers for the differentiation of immature stages of two necrophagous flies (Diptera: Calliphoridae) of potential forensic importance. Neotropical Entomology 34, 777783.CrossRefGoogle Scholar
Truol, G., Usugi, T., Hirao, J., Arneodo, J., Giménez Pecci, M.P. & Laguna, G. (2001) Transmisión experimental del virus del Mal de Río Cuarto por Delphacodes kuscheli . Fitopatologia Brasileira 26, 195200.CrossRefGoogle Scholar
Urban, J.M., Bartlett, C.R. & Cryan, J.R. (2010) Evolution of Delphacidae (Hemiptera: Fulgoroidea): combined-evidence phylogenetics reveals importance of grass host shifts. Systematic Entomology 35, 678691.CrossRefGoogle Scholar
Velázquez, P.D., Arneodo, J.D., Guzmán, F.A., Conci, L.R. & Truol, G.A. (2003) Delphacodes haywardi Muir, a new natural vector of Mal de Río Cuarto virus in Argentina. Journal of Phytopathology 151, 669672.CrossRefGoogle Scholar
Velázquez, P.D., de Remes Lenicov, A.M.M. & Truol, G. (2005) Caenodelphax teapae Fowler (Hemiptera: Delphacidae): Nueva especie vectora del Mal de Río Cuarto virus (MRCV) en Argentina. in Proceedings of the VI Congreso Argentino de Entomología, San Miguel de Tucumán. Tucumán, Argentina, 12 al 15 de Septiembre de 2005.Google Scholar
Velázquez, P.D., Guzmán, F.A., Conci, L.R., Remes Lenicov, A.M.M. & Truol, G.A. (2006) Pyrophagus tigrinus (Hemiptera: Delphacidae), nuevo vector del Mal de Río Cuarto virus (MRCV, Fijivirus) en condiciones experimentales. Agriscientia 23, 914.Google Scholar
Vincze, T., Posfai, J. & Roberts, R.J. (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Research 31, 36883691.CrossRefGoogle ScholarPubMed
Virla, E., Giménez Pecci, M.D.P., Carpane, P. & Laguna, G. (2004) Peregrinus maidis (Hemiptera: Delphacidae), new experimental vector of Mal de Río Cuarto disease of corn. Biocell 28, 547.Google Scholar
Wang, J.F. & Qiao, G.X. (2009) DNA barcoding of genus Toxoptera Koch (Hemiptera: Aphididae): identification and molecular phylogeny inferred from mitochondrial COI sequences. Insect Science 16, 475484.CrossRefGoogle Scholar
Wang, Y.J., Li, Z.H., Zhang, S.F., Varadínová, Z., Jiang, F., Kucerová, Z., Stejskal, V., Opit, G., Cao, Y. & Li, F.J. (2014) DNA barcoding of five common storedproduct pest species of genus Cryptolestes (Coleoptera: Laemophloeidae). Bulletin of Entomological Research 104, 671678.Google ScholarPubMed
Zhang, A.B., He, L.J., Crozier, R.H., Muster, C. & Zhu, C.D. (2010) Estimating sample sizes for DNA barcoding. Molecular Phylogenetics and Evolution 54, 10351039.CrossRefGoogle ScholarPubMed
Zhou, Q.S., Xi, Y.Q., Yu, F., Zhang, X., Li, X.J., Liu, C.L., Niu, Z.Q., Zhu, C.D., Qiao, G.X. & Zhang, Y.Z. (2014) Application of DNA barcoding to the identification of Hymenoptera parasitoids from the soybean aphid (Aphis glycines) in China. Insect Science 21, 363373.CrossRefGoogle Scholar