Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:23:54.121Z Has data issue: false hasContentIssue false

Molecular characterization and expression analysis of soluble trehalase gene in Aphis glycines, a migratory pest of soybean

Published online by Cambridge University Press:  28 February 2013

Raman Bansal
Affiliation:
Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, U.S.A.
M. A. Rouf Mian
Affiliation:
USDA-ARS and Department of Horticulture and Crop Sciences, The Ohio State University, Wooster, OH 44691, U.S.A.
Omprakash Mittapalli
Affiliation:
Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, U.S.A.
Andy P. Michel*
Affiliation:
Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, U.S.A.
*
*Author for correspondence Phone: +1 330 263 3730 Fax: +1 330 263 3686 E-mail: [email protected]

Abstract

In insects, the enzyme trehalase plays a crucial role in energy metabolism, chitin synthesis and possibly during plant–insect interactions. We have characterized a soluble trehalase gene (Tre-1) from cDNA of Aphis glycines, a serious migratory pest of soybean. The full-length cDNA of Tre-1 in A. glycines (AyTre-1) was 2550 bp long with an open reading frame of 1770 bp that encoded for a 589 amino acid residues protein. Sequence assessment and phylogenetic analysis of the putative protein suggested that the selected cDNA belongs to soluble trehalase group. Quantitative PCR (qPCR) analysis in different tissues and developmental stages revealed peak mRNA levels of AyTre-1 in the gut (compared with other tissues assayed) and highest expression in the second instar compared with the other developmental stages assayed. Interestingly, a significantly increased expression of AyTre-1 (1.9-fold, P < 0.05) was observed in the alate morphs compared with that in apterate morphs. However, there was no significant difference in AyTre-1 expression in A. glycines-nymphs fed with resistant and susceptible plants. Expression patterns identified in this study provide a platform to investigate the role of AyTre-1 in physiological activities such as flight and feeding in A. glycines. The characterization of soluble trehalase gene may help to develop novel strategies to manage A. glycines using trehalase inhibitors and using RNA interference for knock-down of AyTre-1 expression.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ando, O., Satake, H., Itoi, K., Sato, A., Nakajima, M., Takahashi, S., Haruyama, H., Ohkuma, Y., Kinoshita, T. & Enokita, R. (1991) Trehazolin, a new trehalase inhibitor. Journal of Antibiotics 44, 11651168.Google Scholar
Asano, N., Kato, A., Kizu, H., Matsui, K., Watson, A.A. & Nash, R.J. (1996) Calystegine B4, a novel trehalase inhibitor from Scopolia japonica . Carbohydrate Research 293, 195204.Google Scholar
Bai, X., Zhang, W., Orantes, L., Jun, T.H., Mittapalli, O., Mian, M.A.R. & Michel, A.P. (2010) Combining next-generation sequencing strategies for rapid molecular resource development from an invasive aphid species, Aphis glycines . PLoS ONE 5, e11370.Google Scholar
Bairoch, A., Bucher, P., Hofmann, K. (1997) The PROSITE database, its status in 1997. Nucleic Acids Research 25, 217221.Google Scholar
Bansal, R., Hulbert, S., Schemerhorn, B., Reese, J.C., Whitworth, R.J., Stuart, J.J., Chen, M.S. (2011) Hessian fly-associated bacteria: transmission, essentiality, and composition. PLoS ONE 6, e23170.Google Scholar
Bansal, R., Mamidala, P., Mian, M.A.R., Mittapalli, O. & Michel, A.P. (2012) Validation of reference genes for gene expression studies in Aphis glycines (Hemiptera: Aphididae). Journal of Economic Entomology 105(4), 14321438.Google Scholar
Becker, A., Schlöder, P., Steele, J.E. & Wegener, G. (1996) The regulation of trehalose metabolism in insects. Experientia 52, 433439.Google Scholar
Bini, D., Cardona, F., Forcella, M., Parmeggiani, C., Parenti, P., Nicotra, F. & Cipolla, L. (2012) Synthesis and biological evaluation of nojirimycin- and pyrrolidine-based trehalase inhibitors. Beilstein Journal of Organic Chemistry 8, 514521.Google Scholar
Brisson, J.A., Davis, G.K. & Stern, D.L. (2007) Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum). Evolution and Development 9, 338346.Google Scholar
Cardona, F., Goti, A., Parmeggiani, C., Parenti, P., Forcella, M., Fusi, P., Cipolla, L., Roberts, S.M., Davies, G.J. & Gloster, T.M. (2010) Casuarine-6-O-a-D-glucoside and its analogues are tight binding inhibitors of insect and bacterial trehalases. Chemical Communications 46, 26292631.Google Scholar
Carolan, J.C., Caragea, D., Reardon, K.T., Mutti, N.S., Dittmer, N., Pappan, K., Cui, F., Castaneto, M., Poulain, J.C., Dossat, C., Tagu, D., Reese, J.C., Reeck, G.R., Wilkinson, T.L. & Edwards, O.R. (2011) Predicted effector molecules in the salivary secretome of the Pea Aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. Journal of Proteomics Research 10, 15051518.Google Scholar
Chen, J., Tang, B., Chen, H., Yao, Q., Huang, X., Chen, J., Zhang, D. & Zhang, W. (2010) Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS ONE 5, e10133.Google Scholar
Elbein, A.D., Pan, Y.T., Pastuszak, I. & Carroll, D. (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R27R.Google Scholar
Fernandez, O., Béthencourt, L., Quero, A., Sangwan, R.S. & Clément, C. (2010) Trehalose and plant stress responses: friend or foe? Trends in Plant Science 15, 409417.Google Scholar
Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J. & Lopez, R. (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Research 38, W695W699.Google Scholar
Gu, J., Shao, Y., Zhang, C., Liu, Z. & Zhang, Y. (2009) Characterization of putative soluble and membrane-bound trehalases in a hemipteran insect, Nilaparvata lugens . Journal of Insect Physiology 55, 9971002.Google Scholar
Hartman, G.L., Domier, L.L., Wax, L.M., Helm, C.G., Onstad, D.W., Shaw, J.T., Solter, L.F., Voegtlin, D.J., D'Arcy, C.J., Gray, M.E., Steffey, K.L., Isard, S.A. & Orwick, P.L. (2001) Occurrence and distribution of Aphis glycines on soybeans in Illinois in 2000 and its potential control. Online. Plant Health Progress doi:10.1094/PHP-2001-0205-01-HN.CrossRefGoogle Scholar
Hill, C.B., Li, Y. & Hartman, G.L. (2004) Resistance to the soybean aphid in soybean germplasm. Crop Science 44, 98106.Google Scholar
Hill, C.B., Crull, L., Herman, T., Voegtlin, D.J. & Hartman, G.L. (2010) A new soybean aphid (Hemiptera: Aphididae) biotype identified. Journal of Economic Entomology 103, 509515.CrossRefGoogle ScholarPubMed
Kameda, Y., Asano, N., Yamaguchi, T. & Matsui, K. (1987) Validoxylamines as trehalase inhibitors. Journal of Antibiotics 40, 563565.Google Scholar
Kim, K.S., Hill, C.B., Hartman, G.L., Mian, M.A.R. & Diers, B.W. (2008) Discovery of soybean aphid biotypes. Crop Science 48, 923928.Google Scholar
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) ClustalW and ClustalX version 2. Bioinformatics 23, 29472948.Google Scholar
Michel, A.P., Zhang, W., Jung, J.K., Kang, S. & Mian, M.A.R. (2009) Population genetic structure of the soybean aphid, Aphis glycines . Environmental Entomology 38, 13011311.Google Scholar
Michel, A.P., Omprakash, M. & Mian, M.A.R. (2011) Evolution of soybean aphid biotypes: understanding and managing virulence to host-plant resistance. pp. 355372 in Sudarec, A. (ed.) Soybean – Molecular Aspects of Breeding. InTech, Rijeka, Croatia.Google Scholar
Mitsumasu, K., Azuma, M., Niimi, T., Yamashita, O. & Yaginuma, T. (2005) Membrane-penetrating trehalase from silkworm Bombyx mori. Molecular cloning and localization in larval midgut. Insect Molecular Biology 14, 501508.Google Scholar
Mutti, N.S. (2006) Molecular studies of the salivary glands of the pea aphid, Acyrthosiphon pisum (Harris). PhD Dissertation, Kansas State University.Google Scholar
Mutti, N.S., Park, Y.S., Reese, J.C. & Reeck, G.R. (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum . Journal of Insect Science 6, 38.Google Scholar
Nakayama, T., Amachi, T., Murao, S., Sakai, T., Shin, T., Kenny, P.T.M., Zagorski, M.G., Iwashita, T., Komura, H. & Nomoto, K. (1991) Structure of trehalostatin: a potent and specific inhibitor of trehalase. Journal of the Chemical Society, Chemical Communications 14, 919921.Google Scholar
Neubauer, I., Ishaaya, I., Aharonson, N. & Raccah, B. (1980) Activity of soluble and membrane-bound trehalase in apterous and alate morphs of Aphis citricola . Comparative Biochemistry and Physiology, B 66, 505510.Google Scholar
Orantes, L.C., Zhang, W., Mian, M.A.R. & Michel, A.P. (2012) Maintaining genetic diversity and population panmixia through dispersal and not gene flow in a holocyclic heteroecious aphid species. Heredity 109, 127134.CrossRefGoogle ScholarPubMed
Ragsdale, D.W., Landis, D.A., Brodeur, J., Heimpel, G.E. & Desneux, N. (2011) Ecology and management of the soybean aphid in North America. Annual Review of Entomology 56, 375399.CrossRefGoogle ScholarPubMed
Schmittgen, T.D. & Livak, K.J. (2008) Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3, 11011118.Google Scholar
Silva, M.C., Ribeiro, A.F., Terra, W.R. & Ferreira, C. (2009) Sequencing of Spodoptera frugiperda midgut trehalases and demonstration of secretion of soluble trehalase by midgut columnar cells. Insect Molecular Biology 18, 769784.Google Scholar
Silva, M.C., Terra, W.R. & Ferreira, C. (2010) The catalytic and other residues essential for the activity of the midgut trehalase from Spodoptera frugiperda . Insect Biochemistry and Molecular Biology 40, 733741.CrossRefGoogle ScholarPubMed
Singh, V., Louis, J., Ayre, B.G., Reese, J.C. & Shah, J. (2011) TREHALOSE PHOSPHATE SYNTHASE11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect Myzus persicae . Plant Journal 67, 97104.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 8, 27312739.Google Scholar
Terra, W.R. & Ferreira, C. (1981) The physiological role of the peritrophic membrane and trehalase: digestive enzymes in the midgut and excreta of starved larvae of Rhynchosciara . Journal of Insect Physiology 27, 325331.Google Scholar
Tilmon, K.J., Hodgson, E.W., O'Neal, M.E. & Ragsdale, D.W. (2011) Biology of the soybean aphid, Aphis glycines (Hemiptera: Aphididae) in the United States. Journal of Integrated Pest Management 2, 17.Google Scholar
Ujita, M., Yamanaka, M., Maeno, Y., Yoshida, K., Ohshio, W., Ueno, Y., Banno, Y., Fujii, H. & Okumura, H. (2011) Expression of active and inactive recombinant soluble trehalase using baculovirus-silkworm expression system and their glycan structures. Journal of Bioscience and Bioengineering 111, 2225.Google Scholar
van Horst, D.J., van Doorn, J.M. & Beenakkers, A.M.T. (1978) Dynamics in the haemolymph trehalose pool during flight of the locust Locusta migratoria . Insect Biochemistry 8, 413416.Google Scholar
Wegener, G., Tschiedel, V., Schlöder, P. & Ando, O. (2003) The toxic and lethal effects of the trehalase inhibitor trehazolin in locusts are caused by hypoglycaemia. Journal of Experimental Biology 206, 12331240.Google Scholar
Will, T. & van Bel, A.J.E. (2008) Induction as well as suppression. How aphid saliva may exert opposite effects on plant defense. Plant Signaling and Behavior 3, 427430.Google Scholar
Wyatt, G.R. (1967) The biochemistry of sugars and polysaccharides in insects. Advances in Insect Physiology 4, 287360.Google Scholar
Supplementary material: PDF

Bansal Supplementary Material

Figure S1

Download Bansal Supplementary Material(PDF)
PDF 114.8 KB
Supplementary material: PDF

Bansal Supplementary Material

Table S1

Download Bansal Supplementary Material(PDF)
PDF 85.8 KB