Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T21:25:52.539Z Has data issue: false hasContentIssue false

Modelling reproduction of Plutella xylostella L. (Lepidoptera: Plutellidae): climate change may modify pest incidence levels

Published online by Cambridge University Press:  14 March 2012

C.A. Marchioro
Affiliation:
Department of Zoology, Universidade Federal do ParanáPO Box 19.020, 81531-990 Curitiba, PR, Brazil
L.A. Foerster*
Affiliation:
Department of Zoology, Universidade Federal do ParanáPO Box 19.020, 81531-990 Curitiba, PR, Brazil
*
*Author for correspondence Fax: 55 041 32662042 E-mail: [email protected]

Abstract

Temperature is considered to be an important abiotic factor influencing insect reproduction. Despite the importance of Plutella xylostella L. (Lepidoptera: Plutellidae) as a pest of brassicaceous crops worldwide, the effects of temperature on its reproduction are not well understood. We evaluated the effect of constant temperatures ranging from 10 to 32.5°C on the reproduction of P. xylostella and developed an oviposition model for the species. The model combined temperature-dependent parameters of total fecundity, age-specific oviposition rate and age-specific survival. Additionally, we modelled population growth as a function of temperature. The estimated parameters allowed us to discuss the possible consequences of global warming on P. xylostella distribution. Temperature affected the length of pre-oviposition after adult emergence, oviposition period, longevity, total fecundity and egg viability. The model predicted that both daily egg production and length of oviposition period decreased at temperatures below 15°C and above 25°C. Population growth increased linearly with temperature in a range from 10°C to 25°C; however, the model predicted a reduction in population growth at temperatures above 28.6°C. Data suggested that temperature plays a critical role in P. xylostella reproduction, and subtle differences in average temperature could have an impact on its population growth. This is especially important in the context of global climate change, which in turn could alter the distribution and abundance of the pest in some regions of the world.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addo-Bediako, A., Chown, S.L. & Gaston, K.J. (2000) Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London 267, 739745.CrossRefGoogle ScholarPubMed
Ali, A. & Rizvi, P.Q. (2008) Effect of varying temperature on the survival and fecundity of Coccinela sptempunctata (Coleoptera: Coccinelidae) fed on Lipaphis erysimi (Hemiptera: Aphididae). Journal of Entomology 5, 133137.CrossRefGoogle Scholar
Andrewartha, H.G. & Birch, L.C. (1954) The Distribution and Abundance of Animals. Chicago, IL, USA, University of Chicago Press.Google Scholar
Awmack, C.S. & Leather, S.R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47, 817844.CrossRefGoogle ScholarPubMed
Ayalew, G. & Ogol, C.K.P.O. (2006) Occurrence of the diamondback moth (Plutella xylostella L.) and its parasitoids in Ethiopia: influence of geographical region and agronomic traits. Journal of Applied Entomology 130, 343348.CrossRefGoogle Scholar
Ayalew, G., Löhr, B., Ogol, C.K.P.O. & Baumgärtner, J. (2006) Suitability of cultivated and wild crucifers for the development of diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae). Journal of Entomology 3, 8288.CrossRefGoogle Scholar
Birth, L.C. (1948) The intrinsic rate of natural increase in insect population. Journal of Animal Ecology 17, 1526.Google Scholar
Briere, J.F., Pracos, P., Le Roux, A.Y. & Pierre, J.S. (1999) A novel rate model of temperature-dependent development for arthropods. Environmental Entomology 28, 2229.CrossRefGoogle Scholar
Carey, J.R. (1993) Applied Demography for Biologists. New York, USA, Oxford University Press.CrossRefGoogle Scholar
Climate Change Impacts Review Group (1996) Review of the Potential Effects of Climate Change in the United Kingdom. London, UK, HMSO.Google Scholar
Golizadeh, A., Kamali, K., Fathipour, Y. & Abbasipour, H. (2007) Temperature-dependent development of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. Insect Science 14, 309316.CrossRefGoogle Scholar
Golizadeh, A., Kamali, K., Fathipour, Y. & Abbasipour, H. (2009) Effect of temperature on life table parameters of Plutella xylostella (Lepidoptera: Plutellidae) on two Brassicaceous host plants. Journal of Asia-Pacific Entomology 12, 207212.CrossRefGoogle Scholar
Guilloux, T., Monnerat, M., Castelo-Branco, M., Kirk, A. & Bordat, D. (2003) Population dynamics of Plutella xylostella (Lep., Yponomeutidae) and its parasitoids in the region of Brasilia. Journal of Applies Entomology 127, 299–292.Google Scholar
Hentz, M.G., Ellsworth, P.G., Naranjo, S.E. & Watson, T.F. (1998) Development, longevity, and fecundity of Chelonus sp. nr. curvimaculatus (Hymenoptera: Braconidae), an egg-larval parasitoid of pink bollworm (Lepidoptera: Gelechiidae). Environmental Entomology 27, 443449.CrossRefGoogle Scholar
Honék, A. (1996) Geographical variation in thermal requirements for insect development. European Journal of Entomology 93, 303312.Google Scholar
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaosu, D., Maskell, K. & Johnson, C.A. (2001) Climate Change 2001: The Scientific Basis. Cambridge, UK, Cambridge University Press.Google Scholar
Kaplan, E.L. & Meier, P. (1958) Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53, 457481.CrossRefGoogle Scholar
Kim, D.S. & Lee, J.H. (2003) Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecological Modelling 162, 145153.CrossRefGoogle Scholar
Kimura, M.T. (2004) Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140, 442449.CrossRefGoogle ScholarPubMed
Liu, S.S., Chen, F.Z. & Zalucki, M.P. (2002) Development and survival of the diamondback moth (Lepidoptera: Plutellidae) at constant and alternating temperatures. Environmental Entomology 31, 221231.CrossRefGoogle Scholar
Malaquias, J.B., Ramalho, F.S., Fernandes, F.S., Nascimento Júnior, J.L., Correia, E.T. & Zanuncio, J.C. (2010) Effects of photoperiod on reproduction and longevity of Podisus nigrispinus (Heteroptera: Pentatomidae). Annals of the Entomological Society of America 103, 603610.CrossRefGoogle Scholar
Marchioro, C.A. (2011) Flutuação populacional de Plutella xylostella (L., 1758) (Lepidoptera: Yponomeutidae) e de seus parasitóides larvais no Sudeste do Paraná: biologia em plantas silvestres e cultivadas e exigências térmicas. PhD thesis, Universidade Federal do Paraná, Curitiba, Paraná.Google Scholar
Mohan, M., Sushil, S.N., Selvakumar, G., Bhatt, J.C., Gujarb, G.T. & Gupta, H.S. (2009) Differential toxicity of Bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondbackmoth, Plutella xylostella L. Pest Management Science 65, 2733.CrossRefGoogle Scholar
Sagarra, L.A., Vincent, C., Peters, N.F. & Stewart, R.K. (2000) Effect of host density, temperature, and photoperiod on the fitness of Anagyrus kamali, a parasitoid of the hibiscus mealybug Maconellicoccus hirsutus. Entomologia Experimentalis et Applicata 96, 141147.CrossRefGoogle Scholar
Sarnthoy, O., Keinmeesuke, P., Sinchaisri, N. & Nakasuji, F. (1989) Development and reproductive rate of the diamondback moth Plutella xylostella from Thailand. Applied Entomology and Zoology 24, 202208.CrossRefGoogle Scholar
Shirai, Y. (2000) Temperature tolerance of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) in tropical and temperate regions of Asia. Bulletin of Entomological Research 90, 357364.CrossRefGoogle ScholarPubMed
Skinner, L.C., Ragsdale, D.W., Hansen, R.W., Chandler, M.A. & Moon, R.D. (2004) Temperature-dependent development of overwintering Aphthona lacertosa and A. nigriscutis (Coleoptera: Chrysomelidae): two flea beetles introduced for the biological control of leagy spurge, Euphorbia esula. Environmental Entomology 33, 147154.CrossRefGoogle Scholar
Son, Y. & Lewis, E.E. (2005) Effects of temperature on the reproductive life history of the black wine weevil, Otiorhynchus sulcatus. Entomologia Experimentalis et Applicata 114, 1524.CrossRefGoogle Scholar
Sporleder, M., Kroschel, J., Quispe, M.R.G. & Lagnaoui, A. (2004) A temperature-based simulation model for the potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Environmental Entomology 33, 477486.CrossRefGoogle Scholar
Statsoft Inc. (2001) Statistica for Windows. Tulsa, OK, USA, Statsoft Inc.Google Scholar
Summers, C.G., Coviello, R.L. & Gutierrez, A.P. (1984) Influence of constant temperatures on the development and reproduction of Acyrthosiphon kondoi (Homoptera: Aphididae). Environmental Entomology 13, 236242.CrossRefGoogle Scholar
Systat Inc. (2002) Table Curve 2D. Chicago, IL, USA, Systat Software Inc.Google Scholar
Talekar, N.S. & Shelton, A.M. (1993) Biology, ecology, and management of the diamondback moth. Annual Review of Entomology 38, 275301.CrossRefGoogle Scholar
Taylor, F. (1981) Ecology and evolution of physiological time in insects. American Naturalist 117, 123.CrossRefGoogle Scholar
Wagner, T.L., Wu, H.I., Sharpe, P.J.H. & Coulson, R.N. (1984) Modelling distributions of insect development times: a literature review and application of the Weibull function. Annals of the Entomological Society of America 77, 475487.CrossRefGoogle Scholar
Wakisaka, S., Tsukuda, R. & Nakasuji, F. (1992) Effects of natural enemies, rainfall, temperature and host plants on survival and reproduction of the diamondback moth. pp. 1526 in Management of Diamondback Moth and Other Crucifer Pests: Proceedings of the Second International Workshop. Asian Vegetable Research and Development Center, Shanhua, China, 10–14 December 1990, Taiwan.Google Scholar