Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T16:20:46.211Z Has data issue: false hasContentIssue false

Microsatellites and 16S sequences corroborate phenotypic evidence of trans-Andean variation in the parasitoid Microctonus hyperodae (Hymenoptera: Braconidae)

Published online by Cambridge University Press:  09 March 2007

L.M. Winder*
Affiliation:
AgResearch Limited, Biocontrol and Biosecurity Group, PO Box 60, Gerald Street, Lincoln, Canterbury, New Zealand
C.B. Phillips
Affiliation:
AgResearch Limited, Biocontrol and Biosecurity Group, PO Box 60, Gerald Street, Lincoln, Canterbury, New Zealand
C. Lenney-Williams
Affiliation:
AgResearch Limited, Biocontrol and Biosecurity Group, PO Box 60, Gerald Street, Lincoln, Canterbury, New Zealand
R.P. Cane
Affiliation:
AgResearch Limited, Biocontrol and Biosecurity Group, PO Box 60, Gerald Street, Lincoln, Canterbury, New Zealand
K. Paterson
Affiliation:
AgResearch Molecular Biology Unit, University of Otago, PO Box 56, Dunedin, New Zealand
C.J. Vink
Affiliation:
AgResearch Limited, Biocontrol and Biosecurity Group, PO Box 60, Gerald Street, Lincoln, Canterbury, New Zealand
S.L. Goldson
Affiliation:
AgResearch Limited, Biocontrol and Biosecurity Group, PO Box 60, Gerald Street, Lincoln, Canterbury, New Zealand
*
*Fax: +64 3 325 9946 E-mail: [email protected]

Abstract

Eight South American geographical populations of the parasitoid Microctonus hyperodae Loan were collected in South America (Argentina, Brazil, Chile and Uruguay) and released in New Zealand for biological control of the weevil Listronotus bonariensis (Kuschel), a pest of pasture grasses and cereals. DNA sequencing (16S, COI, 28S, ITS1, β-tubulin), RAPD, AFLP, microsatellite, SSCP and RFLP analyses were used to seek markers for discriminating between the South American populations. All of the South American populations were more homogeneous than expected. However, variation in microsatellites and 16S gene sequences corroborated morphological, allozyme and other phenotypic evidence of trans-Andes variation between the populations. The Chilean populations were the most genetically variable, while the variation present on the eastern side of the Andes mountains was a subset of that observed in Chile.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, C.N., Connor-Linton, J. & Taylor, K. (2003) Web Chi Square Calculator. Georgetown University. http://www.georgetown.edu/faculty/ballc/webtools/web_chi.htmlGoogle Scholar
Belshaw, R. & Quicke, D.L.J. (1997) A molecular phylogeny of the Aphidiinae (Hymenoptera: Braconidae). Molecular Phylogenetics and Evolution 7, 281293.CrossRefGoogle ScholarPubMed
Chen, S.C.A., Brownlee, A.G., Sorrell, T.C., Ruma, P., Ellis, D.H., Pfeiffer, T., Speed, B.R. & Nimmo, G. (1996) Identification by random amplification of polymorphic DNA of a common molecular type of Cryptococcus neoformans var. neoformans in patients with AIDS or other immunosuppressive conditions. Journal of Infectious Diseases 173, 754758.CrossRefGoogle ScholarPubMed
Cho, S., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander, T.P. & Zhao, S. (1995) A highly conserved nuclear gene for low-level phylogenetics: Elongation factor-1alpha recovers morphology–based tree for heliothine moths. Molecular Biology and Evolution 12, 650656.Google Scholar
Dowton, M., Austin, A.D. & Antolin, M.F. (1998) Evolutionary relationships among the Braconidae (Hymenoptera: Ichneumonoidea) inferred from partial 16S rDNA gene sequences. Insect Molecular Biology 7, 129150.CrossRefGoogle ScholarPubMed
Freeman, S., Pham, M. & Rodriguez, R.J. (1993) Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A+T-Rich DNA, and nuclear DNA analyses. Experimental Mycology 17, 309322.CrossRefGoogle Scholar
Genstat 5 Committee (1993) Genstat 5 release 3 reference manual. Oxford, Oxford Clarendon Press.Google Scholar
Goldson, S.L. & McNeill, M.R. (1992) Variation in the critical photoperiod for diapause induction in Microctonus hyperodae, a parasitoid of Argentine stem weevil. New Zealand Plant Protection 45, 205209.CrossRefGoogle Scholar
Goldson, S.L., McNeill, M.R., Stufkens, M.W., Proffitt, J.R. & Farrell, J.A. (1990) Importation and quarantine of Microctonus hyperodae, a South American parasitoid of Argentine stem weevil. Proceedings of the. 43rd New Zealand Weed and Pest Control Conference 43, 334338.CrossRefGoogle Scholar
Goldson, S.L., McNeill, M.R., Proffitt, J.R., Barker, G.M., Addison, P.J., Barratt, B.I.P. & Ferguson, C.M. (1993a) Systematic mass rearing and release of Microctonus hyperodae (Hym.: Braconidae, Euphorinae), a parasitoid of the Argentine stem weevil Listronotus bonariensis (Col.: Curculionidae) and records of its establishment in New Zealand. Entomophaga 38, 527536.CrossRefGoogle Scholar
Goldson, S.L., McNeill, M.R. & Proffitt, J.R. (1993b) Effect of host condition and photoperiod on the development of Microctonus hyperodae Loan, a parasitoid of the Argentine stem weevil (Listronotus bonariensis (Kuschel)). New Zealand Journal of Zoology 20, 8994.CrossRefGoogle Scholar
Graur, D. (1985) Gene diversity in Hymenoptera. Evolution 39, 190199.CrossRefGoogle ScholarPubMed
Hiss, R.H., Norris, D.E., Deitrich, C.H., Whitcomb, R.F., West, D.F., Bosio, C.F., Kambhampati, S., Piesman, J., Antolin, M.F., Black, W.C. IV. (1994) Molecular taxonomy using single-strand conformation polymorphism (SSCP) analysis of mitochondrial ribosomal DNA genes. Insect Molecular Biology 3, 171182.CrossRefGoogle ScholarPubMed
Iline, I.I. & Phillips, C.B. (2004) Allozyme markers to help define the South American origins of Microctonus hyperodae (Hymenoptera: Braconidae) established in New Zealand for biological control of Argentine stem weevil. Bulletin of Entomological Research 94, 229234.CrossRefGoogle ScholarPubMed
Krzywinski, J., Wilkerson, R.C. & Besansky, N.J. (2001) Evolution of mitochondrial and ribosomal gene sequences in Anophelinae (Diptera: Culicidae): implications for phylogeny reconstruction. Molecular Phylogenetics and Evolution 18, 479487.CrossRefGoogle ScholarPubMed
Landry, B.S., Dextraze, L. & Boivin, G. (1993) Random amplified polymorphic DNA markers for DNA fingerprinting and genetic variability assessment of minute parasitic wasp species (Hymenoptera: Mymaridae and Trichogrammatidae) used in biological control programs of phytophagous insects. Genome 36, 580587.CrossRefGoogle ScholarPubMed
Lenney-Williams, C., Goldson, S.L., Baird, D.B. & Bullock, D.W. (1994) Geographical origin of an introduced insect pest, Listronotus bonariensis (Kuschel), determined by RAPD analysis. Heredity 72, 412419.CrossRefGoogle Scholar
Loan, C.C. & Lloyd, D.C. (1974) Description and field biology of Microctonus hyperodae Loan, n. sp. (Hymenoptera: Braconidae, Euphorinae) a parasite of Hyperodes bonariensis in South America (Coleoptera: Curculionidae). Entomophaga 19, 712.CrossRefGoogle Scholar
Lunt, D.H., Zhang, D-X., Szymura, J.M. & Hewitt, G.M. (1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology 5, 453465.CrossRefGoogle ScholarPubMed
Marchant, A.D. (1988) Apparent introgression of mitochondrial DNA across a narrow hybrid zone in the Caledia captiva species-complex. Heredity 60, 3946.CrossRefGoogle Scholar
McNeill, M.R., Goldson, S.L., Proffitt, J.R., Phillips, C.B. & Addison, P.J. (2002) A description of the commercial rearing and distribution of Microctonus hyperodae (Hymenoptera: Braconidae) for biological control of Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae). Biological Control 24, 65175.CrossRefGoogle Scholar
Onyabe, D.Y. & Conn, J.E. (1999) Intragenomic heterogeneity of a ribosomal DNA spacer (ITS2) varies regionally in the neotropical malaria vector Anopheles nuneztovari (Diptera: Culicidae). Insect Molecular Biology 8, 435CrossRefGoogle ScholarPubMed
Ortì, G., Hare, M.P. & Avise, J.C. (1997) Detection and isolation of nuclear haplotypes by PCR–SSCP. Molecular Ecology 6, 575580.CrossRefGoogle ScholarPubMed
Palumbi, S. (1996) Nucleic acids II: the polymerase chain reaction. pp. 241246 in Molecular Systematics. Sinauer Press.Google Scholar
Paterson, K.A. & Crawford, A.M. (2000) Ovine microsatellite OarKP6 isolated from a BAC containing the ovine interferon gamma gene. Animal Genetics 31, 343CrossRefGoogle ScholarPubMed
Phillips, C.B. & Baird, D.B. (1996) A morphometric method to assist in defining the South American origins of Microctonus hyperodae Loan (Hymenoptera: Braconidae) established in New Zealand. Biocontrol Science and Technology 6, 189205.CrossRefGoogle Scholar
Phillips, C.B. & Baird, D.B. (2001) Geographic variation in egg load of Microctonus hyperodae Loan (Hymenoptera: Braconidae) and its implications for biological control success. Biocontrol Science and Technology 11, 371380.CrossRefGoogle Scholar
Phillips, C.B., Baird, D.B. & Goldson, S.L. (1997) South American origins of Microctonus hyperodae Loan (Hymenoptera: Braconidae) established in New Zealand as defined by morphometric analysis. Biocontrol Science and Technology 7, 247258.CrossRefGoogle Scholar
Richards, N.K., Glare, T.R. & Hall, D.C.A. (1997) Genetic variation in grass grub, Costelytra zealandica, from several regions. Proceedings of the 50th New Zealand Plant Protection Conference 50, 338343.CrossRefGoogle Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular cloning: a laboratory manual 2nd NewYork Cold Spring Harbour Laboratory PressGoogle Scholar
Scheffer, S.J. & Lewis, M.L. (2001) Two nuclear genes confirm mitochondrial evidence of cryptic species within Liriomyza huidobrensis (Diptera: Agromyzidae). Annals of the Entomological Society of America 94, 648653.CrossRefGoogle Scholar
Shaw, S.R. (1985) A phylogenetic study of the subfamilies Meteorinae and Euphorinae (Hymenoptera: Braconidae). Entomography 1, 277370.Google Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Lui, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.CrossRefGoogle ScholarPubMed
Vink, C.J., Phillips, C.B., Mitchell, A.D., Winder, L.M. & Cane, R.P. (2003) Genetic variation in Microctonus aethiopoides (Hymenoptera: Braconidae). Biological Control 28, 251264.CrossRefGoogle Scholar
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Fritjers, A., Pot, J., Peleman, J., Kuiper, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.CrossRefGoogle ScholarPubMed
Whitfield, J.B. & Cameron, S.A. (1998) Hierarchical analysis of variation in the mitochondrial 16S rRNA gene among Hymenoptera. Molecular Biology and Evolution 15, 17281743.CrossRefGoogle ScholarPubMed
White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal DNAgenes for phylogenetics. pp. 315322 in Innis, M.A. (Ed.) PCR protocols. San Diego, Academic Press.Google Scholar
Winder, L.M., Goldson, S.L., Lenney-Williams, C. (1997) Genetic variation between two Microctonus hyperodae populations imported for control of Argentine stem weevil. Proceedings of the 50th New Zealand Plant Protection Conference 50, 333337.CrossRefGoogle Scholar
Wong, A., Forbes, M.R. & Smith, M.L. (2001) Characterization of AFLP markers in damselflies: prevalence of codominant markers and implications for population genetic applications. Genome 44, 677684.CrossRefGoogle ScholarPubMed