Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T10:48:14.409Z Has data issue: false hasContentIssue false

Life history, dormancy regulation, reproductive physiology and basic behaviour of the subtropical fruit fly Rhagoletotrypeta pastranai (Diptera:Tephritidae)

Published online by Cambridge University Press:  24 September 2020

A. Moyano*
Affiliation:
Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-Biotecnología), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
S. Abraham
Affiliation:
Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-Biotecnología), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
S. Ovruski
Affiliation:
Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-Biotecnología), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
G. Van Nieuwenhove
Affiliation:
Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-Biotecnología), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina Instituto de Entomología, Fundación Miguel Lillo, San Miguel de Tucumán, Tucumán, Argentina
J. Rull
Affiliation:
Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-Biotecnología), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
*
Author for correspondence: Andrea Moyano, Email: [email protected]

Abstract

With the purpose of broadening knowledge on the evolution of life history strategies and behaviour of fruit flies within the tribe Carpomyini, the natural history and mating behaviour of the poorly known species Rhagoletotrypeta pastranai Aczél, are described for the first time. Larvae of R. pastranai were recovered from infested Celtis tala Gillies ex Planch and Celtis iguanaea (Jacq.) Sarg. during a 2-month fruiting period. Adults emerged from the recovered pupae after an average of 144.9 ± 3.9 days for females and 143.2 ± 3.38 days for males, suggesting that most individuals became dormant. Results of a variable winter length study suggested that environmental factors other than winter length may regulate dormancy/diapause duration in this subtropical species. Under laboratory conditions, R. pastranai adults lived an average of 51.13 ± 3.06 days in case of females and 48.08 ± 3.76 days in case of males, and required 5–15 days to reach sexual maturity. Behavioural observations under confinement revealed scarce sexual activity but sufficed to determine that, as in other members of the tribe Carpomyini, R. pastranai exhibits a male resource defence mating system. We discuss our findings emphasizing the importance of documenting the natural history and behaviour of unknown species of family Tephritidae and additionally, we highlight the necessity of future research to understand factors regulating dormancy/diapause and the evolution of life history strategies and sexual behaviour of subtropical species.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aluja, M (1999) Fruit fly (Diptera: Tephritidae) research in Latin America: myths, realities and dreams. Anais da Sociedade Entomológica do Brasil (currently Neotropical Entomology) 28, 565594.CrossRefGoogle Scholar
Araujo-Diniz, DF, Ribeiro de Albuquerque, CM, Oliveira Oliva, L, Varjal de Melo-Santos, MA and Junqueira Ayres, CF (2017) Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasites & Vectors 10, 310.CrossRefGoogle Scholar
Averill, AL and Prokopy, RJ (1987) Intraspecific competition in the tephritid fruit fly Rhagoletis pomonella. Ecology 68, 878886.CrossRefGoogle Scholar
Berg, CC and Dahlberg, SV (2001) A revision of Celtis Subg. Mertensia (Ulmaceae). Brittonia 53, 6681.CrossRefGoogle Scholar
Boucher, J, Ashley, R and Adams, R Jr (2005) Quantifying pepper maggot (Diptera: Tephritidae) oviposition and infestation over time. Journal of Economic Entomology 98, 350357.CrossRefGoogle ScholarPubMed
Brown, A, Grau, H, Malizia, L and Grau, A (2001) Bosques Nublados del Neotrópico en Argentina. In Kappelle, M and Brown, AD (eds), Bosques Nublados del Neotrópico. Costa Rica: Editorial INBio, pp. 623659.Google Scholar
Brown, A, Pacheco, S, Lomáscolo, T and Malizia, L (2006) Ecoregión yungas. In Brown, A, Martínez Ortiz, U, Acerbi, M and Corcuera, J (eds), La Situación Ambiental Argentina 2005. Buenos Aires, Argentina: Fundación Vida Silvestre, pp. 5361.Google Scholar
Costello, MJ, Wilson, S and Houlding, B (2012) Predicting total global species richness using rates of species description and estimates of taxonomic effort. Systematic Biology 61, 871883.CrossRefGoogle ScholarPubMed
Climate-Date.org (2020) (Accessed 5 Feb 2020).Google Scholar
Danks, HV (2007) The elements of seasonal adaptations in insects. The Canadian Entomologist 139, 144.CrossRefGoogle Scholar
Denlinger, DL (1986) Dormancy in tropical insects. Annual Review of Entomology 31, 239264.CrossRefGoogle ScholarPubMed
Díaz-Fleischer, F, Papaj, DR, Prokopy, RJ and Norrbom, AL (1999) Evolution of fruit fly oviposition behavior. In Aluja, M and Norrbom, AL (eds) Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. Boca Raton, FL: CRC Press, pp. 811841.Google Scholar
Dong, YC, Wang, ZJ, Clarke, AR, Pereira, R, Desneux, N and Niu, CY (2013) Pupal diapause development and termination is driven by low temperature chilling in Bactrocera minax. Journal of Pest Science 86, 429436.CrossRefGoogle Scholar
Dottori, N and Hunziker, AT (1994) Celtidaceae. In Hunziker, AT (ed.) Flora Fanerogámica Argentina. Fascículo 2. Córdoba, Argentina: PROFLORA (CONICET), pp. 511.Google Scholar
Drew, RAI and Yuval, B (1999) The evolution of fruit fly feeding behavior. In Aluja, M and Norrbom, AL (eds) Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. Boca Raton, FL: CRC Press, pp. 731749.CrossRefGoogle Scholar
Feder, JL, Powell, TH, Filchak, KE and Leung, B (2010) The diapause response of Rhagoletis pomonella to varying environmental conditions and its significance for geographic and host plant-related adaptation. Entomologia Experimentalis et Applicata 136, 3144.CrossRefGoogle Scholar
Hernández-Ortiz, V, Guillén-Aguilar, J and López, L (2011) Taxonomía e identificación de moscas de la fruta de importancia económica en América. In Montoya, P, Toledo, J and Hernández, E (eds), Moscas de la Fruta: Fundamentos y Procedimientos para su Manejo. México D.F., México: S y G Eds, pp. 4980.Google Scholar
Jaldo, HE, Gramajo, MC and Willink, E (2001) Mass rearing of Anastrepha fraterculus (Diptera: Tephritidae): a preliminary strategy. Florida Entomologist 84, 716718.CrossRefGoogle Scholar
Koštál, V (2006) Eco-physiological phases of insect diapause. Journal of Insect Physiology 52, 113127.CrossRefGoogle ScholarPubMed
Lachmann, AD and Papaj, DR (2001) Effect of host stimuli on ovariole development in the walnut fly, Rhagoletis juglandis (Diptera. Tephritidae). Physiological Entomology 26, 3848.Google Scholar
Leonel, FL Jr, Zucchi, RA and Wharton, RA (1995) Distribution and tephritid hosts (Diptera) of braconid parasitoids (Hymenoptera) in Brazil. International Journal of Pest Management 41, 208213.CrossRefGoogle Scholar
Leonel, FL Jr, Zucchi, RA and Canal Daza, NA (1996) Parasitismo de moscas-das-frutas (Diptera: Tephritidae) por Braconidae (Hymenoptera) en duas localidades do Estado de Sao Paulo. Anais da Sociedade Entomológica do Brasil 25, 199205.Google Scholar
Mora, C, Tittensor, DP, Adl, S, Simpson, AGB and Worm, B (2011) How many species are there on earth and in the ocean? PLoS Biology 9, e1001127.CrossRefGoogle ScholarPubMed
Norrbom, AL (1994) New species and phylogenetic analysis of Cryptodacus, Haywardina, and Rhagoletotrypeta (Diptera: Tephritidae). Insecta Mundi 8, 3765.Google Scholar
Norrbom, AL (2004) Updates to biosystematic database of world Diptera for Tephritidae through 1999. Diptera Data Dissem. Disk (CD-ROM) 2.Google Scholar
Norrbom, AL, Carroll, LE, Thompson, FC, White, IM and Freidberg, A (1999) Systematic database of names. In Thompson, FC (ed) Fruit Fly Expert Identification System and Systematic. Information Database. Leiden, Netherlands: Backhuys Publ., pp. 65299.Google Scholar
Norrbom, AL, Castillo-Meza, AL, García-Chávez, JH, Aluja, M and Rull, J (2014) A new species of Anastrepha (Diptera: Tephritidae) from Euphorbia tehuacana (Euphorbiaceae) in Mexico. Zootaxa 3780, 567576.CrossRefGoogle Scholar
Norrbom, AL, Savaris, MA and Marinoni, L (2016) New species of Rhagoletotrypeta (Diptera: Tephritidae) from the Dominican Republic and southern Brazil and Paraguay. Zootaxa 4088, 547554.CrossRefGoogle ScholarPubMed
Nufio, CR, Papaj, DR and Alonso-Pimentel, H (2000) Host utilization by the walnut fly, Rhagoletis juglandis (Diptera: Tephritidae). Environmental Entomology 29, 9941001.CrossRefGoogle Scholar
Opp, SB and Prokopy, RJ (2000) Multiple mating and reproductive success of male and female apple maggot flies Rhagoletis pomonella (Diptera: Tephritidae). Journal of Insect Behavior 13, 901914.CrossRefGoogle Scholar
Ovruski, SM, Norrbom, AL, Schliserman, P and Aluja, M (2005) Biology and taxonomy of Rhagoletotrypeta (Diptera: Tephritidae): a new species from Cuba and new host plant, parasitoid and distribution records from northwestern Argentina. Annals of the Entomological Society of America 98, 252258.CrossRefGoogle Scholar
Palacio, FX, Lacoretz, MV, Perez, EC and Ordano, M (2019) On a poorly known tritrophic interaction: fruit-infesting Rhagoletotrypeta pastranai Aczél (Diptera: Tephritidae) and its parasitoid Utetes Anastrephae (Viereck) (Hymenoptera: Braconidae) in Celtis ehrenbergiana (Klotzsch) Liebm. (Rosales: Cannabaceae) fruits. Revista de la Sociedad Entomológica Argentina 78, 2932.CrossRefGoogle Scholar
Prokopy, RJ and Papaj, DR (1999) Behavior of flies of the genera Rhagoletis, Zonosemata, and Carpomya (Trypetinae: Carpomyina). In Aluja, M and Norrbom, AL (eds) Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. Boca Raton, FL: CRC Press, pp. 219252.CrossRefGoogle Scholar
Romanczuk, MC and Del Pero de Martínez, M (1978) Las especies del género Celtis (Ulmaceae) en la flora Argentina. Darwiniana 21, 542577.Google Scholar
Rull, J, Abraham, S, Tadeo, E and Rodriguez, CL (2016) Life history and mating behavior of Rhagoletis solanophaga (Diptera: Tephritidae), non-diapausing species with highly variable mating duration. Journal of Insect Behaviour 29, 629642.CrossRefGoogle Scholar
Rull, J, Abraham, S, Schlisermann, P, Ordano, M and Ovruski, S (2017) Mating behavior and basic biology of Haywardina cuculi (Diptera: Tephritidae), a poorly known species exhibiting high variability in copulation duration. Journal of Insect Behavior 30, 439453.CrossRefGoogle Scholar
Rull, J (2020) Distribución y relevancia del género Rhagoletis en México. In Montoya, P, Toledo, J and Hernández, E (eds.) Moscas de la Fruta: Fundamentos y procedimientos para su manejo. Ciudad de México: S y G editores, pp. 165184.Google Scholar
Shelly, T (2010) Effects of methyl eugenol and raspberry ketone/cue lure on the sexual behavior of Bactrocera species (Diptera: Tephritidae). Applied Entomology and Zoology 45(3), 349361.CrossRefGoogle Scholar
Shelly, TE, McInnis, DO, Pahio, E and Edu, J (2004) Aromatherapy in the Mediterranean fruit fly (Diptera: Tephritidae): sterile males exposed to ginger root oil in prerelease storage boxes display increased mating competitiveness in field-cage trials. Journal of Economic Entomology 97, 846853.CrossRefGoogle ScholarPubMed
Smith, JJ and Bush, GL (1999) Phylogeny of the subtribe Carpomyina (Trypetinae), emphasizing relationships of the genus Rhagoletis. In Aluja, M and Norrbom, AL (eds.). Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. Boca Raton, FL: CRC Press, pp. 187217.CrossRefGoogle Scholar
Stork, N (2018) How many species of insects and other terrestrial arthropods are there on Earth? Annual Review of Entomology 63, 3145.CrossRefGoogle ScholarPubMed
Wiegmann, BM, Trautwein, MD, Winkler, IS, Barr, NB, Kim, JW, Lambkin, C, Bertone, MA, Cassel, BK, Bayless, KM, Heimberg, AM, Wheeler, BM, Peterson, KJ, Pape, T, Sinclair, BJ, Skevington, JH, Blagoderov, V, Caravas, J, Kutty, SN, Schmidt-Ottm, U, Kampmeier, GE, Thompson, FC, Grimaldi, DA, Beckenbach, AT, Courtney, GW, Friedrich, M, Meier, R and Yeates, DK (2011) Episodic radiations in the fly tree of life. Proceedings of the National Academy of Sciences 108, 56905695.CrossRefGoogle ScholarPubMed
Yee, WL, Hernández-Ortiz, V, Rull, J, Sinclair, BJ and Neven, LG (2014) Status of Rhagoletis (Diptera: Tephritidae) pests in the NAPPO countries. Journal of Economic Entomology 107, 1128.CrossRefGoogle ScholarPubMed