Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T05:33:10.978Z Has data issue: false hasContentIssue false

Investigation of the genetic diversity of an invasive whitefly (Bemisia tabaci) in China using both mitochondrial and nuclear DNA markers

Published online by Cambridge University Press:  15 February 2011

D. Chu*
Affiliation:
High-tech Research Center, Shandong Academy of Agricultural Sciences and Key Laboratory for Genetic Improvement of Crop Animal and Poultry of Shandong Province, Jinan 250100, China
C.S. Gao
Affiliation:
High-tech Research Center, Shandong Academy of Agricultural Sciences and Key Laboratory for Genetic Improvement of Crop Animal and Poultry of Shandong Province, Jinan 250100, China Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong 266109, China
P. De Barro
Affiliation:
CSIRO Entomology120 Meiers Road Indooroopilly, Qld 4068, Australia
F.H. Wan
Affiliation:
The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
Y.J. Zhang
Affiliation:
Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
*
*Authors for correspondence Fax: +86 531 83178156 E-mail: [email protected]

Abstract

It is often considered that reduced genetic variation due to bottlenecks and founder effects limits the capacity for species to establish in new environments and subsequently spread. The recent invasion (during the past five years) of an alien whitefly, one member of Bemisia tabaci cryptic species complex, referred to as Mediterranean (herein referred to as Q-type) in Shandong Province, China, provides an ideal opportunity to study the changes in genetic variation between its home range in the Mediterranean region and its invasion range. Using both the mitochondrial cytochrome oxidase I (mtCOI) and nuclear (microsatellite) DNA, we show that Q in Shandong likely originated in the western Mediterranean. We also found that the haplotype diversity was low compared with its presumed geographic origin, whereas microsatellite allele diversity showed no such decline. A key factor in invasions is the establishment of females and so bottleneck and founder events can lead to a very rapid and considerable loss of mitochondrial diversity. The lack of haplotype diversity in Shandong supports the interpretation that, at one or more points between the western Mediterranean and China, the invading Q lost haplotype diversity, most probably through the serial process of establishment and redistribution through trade in ornamental plants. However, the loss in haplotype diversity does not necessarily mean that nuclear allelic diversity should also decline. Provided females can mate freely with whichever males are available, allelic diversity can be maintained or even increased relative to the origin of the invader. Our findings may offer some explanation to the apparent paradox between the concept of reduced genetic variation limiting adaptation to new environments and the observed low diversity in successful invaders.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berghoff, S.M., Kronauer, D.J.C., Edwards, K.J. & Franks, N.R. (2008) Dispersal and population structure of a New World predator, the army ant Eciton burchellii. Journal of Evolutionary Biology 21, 11251132.CrossRefGoogle ScholarPubMed
Boykin, L.M., Shatters, R.G. Jr., Rosell, R.C., McKenzie, C.L., Bagnall, R.A., De Barro, P. & Frohlich, D.R. (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Molecular Phylogenetics and Evolution 44, 13061319.CrossRefGoogle ScholarPubMed
Brown, J.K. (2010) Phylogenetic biology of the Bemisia tabaci sibling species group. pp. 3167 in Stansly, P.A. & Naranjo, S.E. (Eds) Bionomics and Management of a Global Pest. Amsterdam, The Netherlands, Springer.Google Scholar
Bucciarelli, G., Golani, D. & Bernardi, G. (2002) Genetic cryptic species as biological invaders: The case of a Lessepsian fish migrant, the hardyhead silverside Atherinomorus lacunosus. Journal of Experimental Marine Biology and Ecology 273, 143149.Google Scholar
Charbonnel, N., Angers, B., Rasatavonjizay, R., Bremond, P. & Jarne, P. (2002) Evolutionary aspects of the metapopulation dynamics of Biomphalaria pfeifferi, the intermediate host of Schistosoma mansoni. Journal of Evolutionary Biology 15, 248261.CrossRefGoogle Scholar
Cheek, S. & MacDonald, O. (1994) Management of Bemisia tabaci. Pest Science 42, 135137.Google Scholar
Chu, D., Zhang, Y.J., Cong, B., Xu, B.Y., Wu, Q.J. & Zhu, G.R. (2005) Sequences analysis of mtDNA COI gene and molecular phylogeny of different geographical populations of Bemisia tabaci (Gennadius). Scientia Agricultura Sinica 38, 7685.Google Scholar
Chu, D., Zhang, Y.J., Brown, J.K., Cong, B., Xu, B.Y., Wu, Q.J. & Zhu, G.R. (2006) The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops. Florida Entomologist 89, 168174.CrossRefGoogle Scholar
Chu, D., Jiang, T., Liu, G.X., Jiang, D.F., Tao, Y.L., Fan, Z.X., Zhou, H.X. & Bi, Y.P. (2007) Biotype status and distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) in Shandong province of China based on mitochondrial DNA markers. Environmental Entomology 36, 12901295.CrossRefGoogle ScholarPubMed
Chu, D., Wan, F.H., Zhang, Y.J. & Brown, J.K. (2010a) Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environmental Entomology 39, 10281036.CrossRefGoogle ScholarPubMed
Chu, D., Zhang, Y.J. & Wan, F.H. (2010b) Cryptic invasion of the exotic Bemisia tabaci biotype Q occurred widespread in Shandong Province of China. Florida Entomologist 3, 203207.CrossRefGoogle Scholar
Dalmon, A., Halkett, F., Granier, M., Delatte, H. & Peterschmitt, M. (2008) Genetic structure of the invasive pest Bemisia tabaci: Evidence of limited but persistent genetic differentiation in glasshouse populations. Heredity 100, 316325.CrossRefGoogle ScholarPubMed
Dalton, R. (2006) The Christmas invasion. Nature 443, 898900.CrossRefGoogle ScholarPubMed
De Barro, P.J. & Driver, F. (1997) Use of RAPD PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Australian Journal of Entomology 36, 149152.CrossRefGoogle Scholar
De Barro, P.J., Driver, F., Trueman, J.W. & Curran, J. (2000) Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Molecular Phylogenetics and Evolution 16, 2936.CrossRefGoogle ScholarPubMed
De Barro, P.J., Scott, K.D., Graham, G.C., Lange, C.L. & Schutze, M.K. (2003) Isolation and characterization of microsatellite loci in Bemisia tabaci. Molocular Ecology Notes 3, 4043.CrossRefGoogle Scholar
DeHeer, C.J. & Vargo, E.L. (2008) Strong mitochondrial DNA similarity but low relatedness at microsatellite loci among families within fused colonies of the termite Reticulitermes flavipes. Insectes Sociaux 55, 190199.CrossRefGoogle Scholar
Dinsdale, A., Cook, L., Riginos, C., Buckley, Y. & De Barro, P.J. (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Annals of the Entomological Society of America 103, 196208.CrossRefGoogle Scholar
Downie, D.A. (2002) Locating the sources of an invasive pest, grape phylloxera, using a mt DNA gene genealogy. Molocular Ecology 11, 20132026.CrossRefGoogle Scholar
Facon, B., Pointier, J.P., Glaubrecht, M., Poux, C., Jarne, P. & David, P. (2003) A molecular phylogeography approach to biological invasions of the New World by parthenogenetic Thiarid snails. Molocular Ecology 12, 30273039.CrossRefGoogle ScholarPubMed
Frankham, R. (2005) Invasion biology-resolving the genetic paradox in invasive species. Heredity 94, 385.CrossRefGoogle ScholarPubMed
Frohlich, D.R., Torres-Jerez, I.I., Bedford, I.D., Markham, P.G. & Brown, J.K. (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molocular Ecology 8, 16831691.CrossRefGoogle ScholarPubMed
Gammon, M.A. & Kesseli, R. (2010) Haplotypes of Fallopia introduced into the US. Biological Invasions 12, 421427.CrossRefGoogle Scholar
Giraud, T., Pedersen, J.S. & Keller, L. (2002) Evolution of supercolonies: The Argentine ants of southern Europe. Proceedings of the National Academy of Sciences 99, 60756079.CrossRefGoogle ScholarPubMed
Golani, D., Azzurro, E., Corsini-Foka, M., Falautano, M., Andaloro, F. & Bernardi, G. (2007) Genetic bottlenecks and successful biological invasions: The case of a recent Lessepsian migrant. Biology Letters 3, 541545.CrossRefGoogle ScholarPubMed
Goodisman, M.A.D., Matthews, R.W. & Crozier, R.H. (2001) Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia. Molocular Ecology 10, 14231432.CrossRefGoogle ScholarPubMed
Guirao, P., Beitia, F. & Cenis, J.L. (1997) Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research 87, 587593.CrossRefGoogle Scholar
Johnson, R.N. & Starks, P.T. (2004) A surprising level of genetic diversity in an invasive wasp: Polistes dominulus in the northeastern United States. Annals of the Entomological Society of America 97, 732737.CrossRefGoogle Scholar
Kirk, A.A., Lacey, L.A., Roditakis, N. & Brown, J.K. (1993) The status of Bemisia tabaci (Hom, Aleyrodidae), Trialeurodes vaporariorum (Hom, Aleyrodidae) and their natural enemies in Crete. Entomophaga 38, 405410.CrossRefGoogle Scholar
Kolbe, J.J., Glor, R.E., Schettino, L.R.G., Lara, A.C., Larson, A. & Losos, J.B. (2004) Genetic variation increases during the biological invasion by a Cuban lizard. Nature 431, 177181.CrossRefGoogle ScholarPubMed
Librado, P. & Rozas, J. (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.CrossRefGoogle ScholarPubMed
Lockwood, J.L., Hoopes, M.F. & Marchetti, M.P. (2007) Invasion Ecology. Oxford, UK, Blackwell Publishing.Google Scholar
Lynch, M. & Crease, T.J. (1990) The analysis of population survey data on DNA sequence variation. Molecular Biology and Evolution 7, 377394.Google ScholarPubMed
Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M. & Bazzaz, F.A. (2000) Biotic invasions: Causes, epidemiology, global consequences and control. Ecological Applications 10, 698710.CrossRefGoogle Scholar
Meunier, C., Tirard, C., Hurtrez-Bousses, S., Durand, P., Bargues, M.D., Mas-Coma, S., Pointier, J.P., Jourdane, J. & Renaud, F. (2001) Lack of molluscan host diversity and the transmission of an emerging parasitic disease in Bolivia. Molocular Ecology 10, 13331340.CrossRefGoogle ScholarPubMed
Miura, O. (2007) Molecular genetic approaches to elucidate the ecological and evolutionary issues associated with biological invasions. Ecological Research 22, 876883.CrossRefGoogle Scholar
Mound, L.A. & Hasley, S.H. (1978) Whitefly of the World: A Systematic Catalogue of the Aleyrodidae (Homoptera) with Host Plant and Natural Enemy Data. London, UK, John Wiley.CrossRefGoogle Scholar
Nei, M. (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70, 33213323.CrossRefGoogle ScholarPubMed
Nei, M. (1987) Molecular Evolutionary Genetics. New York, NY, USA, Columbia University Press.CrossRefGoogle Scholar
Perrings, C., Williamson, M., Barbier, E.B., Delfino, D., Dalmazzone, S., Shogren, J.F., Simmons, P.J. & Watkinson, A. (2002) Biological invasion risks and the public good: An economic perspective. Conservation Ecology 6, 1p. Available online at http://www.consecol.org/vol6/iss1/art1.CrossRefGoogle Scholar
Pimentel, D., Lach, L., Zuniga, R. & Morrison, D. (2000) Environmental and economic costs associated with non-indigenous species in the United States. Bioscience 50, 5364.CrossRefGoogle Scholar
Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., With, K.A., Baughman, S., Cabin, R.J., Cohen, J.E., Ellstrand, N.C., McCauley, D.E., Neil, P.O., Parker, I.M., Thompson, J.N. & Weller, S.G. (2001) The population biology of invasive species. Annual Review of Ecology and Systematics 32, 305332.CrossRefGoogle Scholar
Sax, D.F., Gaines, S.D. & Stachowicz, J.J. (2005) Species Invasions: Insights into Ecology, Evolution and Biogeography. Sunderland, MA, USA, Sinauer.Google Scholar
Shao, Z.Y., Mao, H.X., Fu, W.J., Ono, M., Wang, D.S., Bonizzoni, M. & Zhang, Y.P. (2004) Genetic structure of Asian populations of Bombus ignitus (Hymenoptera: Apidae). Journal of Heredity 95, 4652.CrossRefGoogle ScholarPubMed
Shatters, R.G., Powell, C.A., Boykin, L.M., He, L.S. & Mckenzie, C.L. (2009) Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: Development of universal and Bemisia tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers. Journal of Economic Entomology 102, 750758.CrossRefGoogle ScholarPubMed
Stepien, C.A., Taylor, C.D. & Dabrowska, K.A. (2002) Genetic variability and phylogeographical patterns of a nonindigenous species invasion: a comparison of exotic vs. native zebra and quagga mussel populations. Journal of Evolutionary Biology 15, 314328.CrossRefGoogle Scholar
Tajima, F. (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437460.CrossRefGoogle ScholarPubMed
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties, and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Tsagkarakou, A., Tsigenopoulos, C.S., Gorman, K., Lagnel, J. & Bedford, I.D. (2007) Biotype status and genetic polymorphism of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Greece: mitochondrial DNA and microsatellites. Bulletin of Entomological Research 97, 2940.CrossRefGoogle ScholarPubMed
Tsutsui, N.D., Suarez, A.V., Holway, D.A. & Case, T.J. (2000) Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Sciences 97, 59485953.CrossRefGoogle ScholarPubMed
Watterson, G.A. (1975) On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7, 256276.CrossRefGoogle ScholarPubMed
Xu, J., De Barro, P.J. & Liu, S.S. (2010) Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bulletin of Entomological Research 100, 359366.CrossRefGoogle ScholarPubMed
Yeh, F.C., Yang, R.C., Boyle, T., Ye, Z.H. & Mao, J.X. (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada.Google Scholar