Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T01:05:13.706Z Has data issue: false hasContentIssue false

Interspecific interactions in solitary Aculeata – is the presence of heterospecifics important for females establishing nests?

Published online by Cambridge University Press:  09 May 2017

J. Kierat*
Affiliation:
Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
K. Miler
Affiliation:
Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
W. Celary
Affiliation:
Department of Ecology and Environmental Conservation, Institute of Biology, Jan Kochanowski University, Świętokrzyska 15, 25-406 Kielce, Poland
M. Woyciechowski
Affiliation:
Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
*
*Author for correspondence Phone: +48-12-664-51-26 Fax: +48-12-664-69-12 E-mail: [email protected]

Abstract

There are several possible causes of aggregated nesting in solitary Aculeata, one being joint defense against parasites. We tested whether females prefer nesting in aggregations, even if they consist of heterospecifics. We compared the colonization and nesting parasitism of trap-nests with and without a red mason bee aggregation. The results did not support our hypothesis that females prefer nesting in aggregations. The numbers of wild Aculeata nests did not differ between trap-nests with and without an aggregation. Unexpectedly, parasitism rates were higher in trap-nests with aggregations. When analyzing only nests of wild insects (mostly wasps), the differences in parasitism disappeared. Natural nesting sites may be such a limited resource that females nested in the first trap-nest they encountered and did not discriminate between our treatments, or wasps might share too few parasites species with bees to benefit from joint nest defense.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizen, M.A. & Harder, L.D. (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Current Biology 19, 915918. doi: 10.1016/j.cub.2009.03.071.Google Scholar
Artz, D.R., Allan, M.J., Wardell, G.I. & Pitts-Singer, T.L. (2013) Nesting site density and distribution affect Osmia lignaria (Hymenoptera: Megachilidae) reproductive success and almond yield in a commercial orchard. Insect Conservation and Diversity 6, 715724. doi: 10.1111/icad.12026.Google Scholar
Artz, D.R., Allan, M.J., Wardell, G.I. & Pitts-Singer, T.L. (2014) Influence of nest box color and release sites on Osmia lignaria (Hymenoptera: Megachilidae) reproductive success in a commercial almond orchard. Journal of Economic Entomology 107, 20452054. doi: 10.1603/EC14237.CrossRefGoogle Scholar
Bosch, J. & Kemp, W.P. (2000) Development and emergence of the orchard pollinator Osmia lignaria (Hymenoptera: Megachilidae). Environmental Entomology 29, 813. doi: 10.1603/0046-225X-29.1.8.Google Scholar
Bosch, J. & Vicens, N. (2006) Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta . Behavioral Ecology and Sociobiology 60, 2633. doi: 10.1007/s00265-005-0134-4.Google Scholar
Bosch, J., Kemp, W.P. & Trostle, G.E. (2006) Bee population returns and cherry yields in an orchard pollinated with Osmia lignaria (Hymenoptera: Megachilidae). Journal of Economic Entomology 99, 408413. doi: 10.1093/jee/99.2.408.Google Scholar
Černá, K., Zemenová, M., Macháčková, L., Kolínová, Z. & Straka, J. (2013) Neighbourhood society: nesting dynamics, usurpations and social behaviour in solitary bees. PloS ONE 8, e73806. doi: 10.1371/journal.pone.0073806.Google Scholar
Filella, I., Bosch, J., Llusià, J., Seco, R. & Peñuelas, J. (2011) The role of frass and cocoon volatiles in host location by Monodontomerus aeneus, a parasitoid of Megachilid solitary bees. Environmental Entomology 40, 126131. doi: 10.1603/EN10165.Google Scholar
Guédot, C., Bosch, J., James, R.R. & Kemp, W.P. (2006) Effects of three-dimensional and color patterns on nest location and progeny mortality in alfalfa leafcutting bee (Hymenoptera: Megachilidae). Journal of Economic Entomology 99, 626633. Available online at http://www.ncbi.nlm.nih.gov/pubmed/16813291.Google Scholar
Hager, B.J. & Kurczewski, F.E. (1985) Cleptoparasitism of Ammophila harti (Fernald) (Hymenoptera: Sphecidae) by Senotainia vigilans Allen, with observations on Phrosinella aurifacies Downes (Diptera: Sarcophagidae). Psyche 92, 451562.Google Scholar
Inouye, B.D. (2000) Use of visual and olfactory cues for individual nest hole recognition by the solitary bee Epicharis metatarsalis (Apidae, Anthophorinae). Journal of Insect Behavior 13, 231238.CrossRefGoogle Scholar
Kay, M. & Wobbrock, J. (2016) ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. R package version 0.10.2. Retrieved from R package version 0.10.2.Google Scholar
Kim, J.-Y. (1997) Female size and fitness in the leaf-cutter bee Megachile apicalis . Ecological Entomology 22, 275282. doi: 10.1046/j.1365-2311.1997.00062.x.Google Scholar
Krunić, M., Stanisavljević, L., Pinzauti, M. & Felicioli, A. (2005) The accompanying fauna of Osmia cornuta and Osmia rufa and effective measures of protection. Bulletin of Insectology 58, 141152.Google Scholar
Leys, C. & Schumann, S. (2010) A nonparametric method to analyze interactions: the adjusted rank transform test. Journal of Experimental Social Psychology 46, 684688. doi: 10.1016/j.jesp.2010.02.007.Google Scholar
Michener, C.D. (2007) The Bees of the World. 2nd edn. Baltimore, John Hopkins University Press, p. 992.Google Scholar
O'Neill, K.M. (2001) Solitary Wasps: Behavior and Natural History. Ithaca, Cornell University Press.Google Scholar
Park, Y.-L., Kondo, V., White, J., West, T., McConnell, B. & McCutcheon, T. (2009) Nest-to-nest dispersal of Chaetodactylus krombeini (Acari, Chaetodactylidae) associated with Osmia cornifrons (Hym., Megachilidae). Journal of Applied Entomology 133, 174180. doi: 10.1111/j.1439-0418.2008.01351.x.Google Scholar
Pitts-Singer, T.L. (2013) Intended release and actual retention of Alfalfa Leafcutting Bees (Hymenoptera: Megachilidae) for pollination in commercial alfalfa seed fields. Journal of Economic Entomology 106, 576586. doi: 10.1603/EC12416.Google Scholar
Potts, S. & Willmer, P. (1997) Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecological Entomology 22, 319328. doi: 10.1046/j.1365-2311.1997.00071.x.CrossRefGoogle Scholar
Potts, S.G., Roberts, S.P.M., Dean, R., Marris, G., Brown, M.A., Jones, R., Neumann, P. & Settele, J. (2015) Declines of managed honey bees and beekeepers in Europe. Journal of Apicultural Research 49, 1522. doi: 10.3896/IBRA.1.49.1.02.Google Scholar
R Core Team (2015) R: a Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Rosenheim, J.A. (1990) Density-dependent parasitism and the evolution of aggregated nesting in the solitary Hymenoptera. Annals of the Entomological Society of America 83, 277286.Google Scholar
Seidelmann, K., Ulbrich, K. & Mielenz, N. (2010) Conditional sex allocation in the Red Mason bee, Osmia rufa . Behavioral Ecology and Sociobiology 64, 337347. doi: 10.1007/s00265-009-0850-2.CrossRefGoogle Scholar
Smith, K.M., Loh, E.H., Rostal, M.K., Zambrana-Torrelio, C.M., Mendiola, L. & Daszak, P. (2013) Pathogens, pests, and economics: drivers of honey bee colony declines and losses. EcoHealth 10, 434445. doi: 10.1007/s10393-013-0870-2.Google Scholar
Steffan-Dewenter, I. & Schiele, S. (2004) Nest-site fidelity, body weight and population size of the red mason bee, Osmia rufa (Hymenoptera: Megachilidae), evaluated by mark-recapture experiments. Entomologia Generalis 27, 123131.Google Scholar
Steffan-Dewenter, I. & Schiele, S. (2008) Do resources or natural enemies drive bee population dynamics in fragmented habitats? Ecology 89, 13751387. Available online at http://www.ncbi.nlm.nih.gov/pubmed/18543630.CrossRefGoogle ScholarPubMed
Trumbo, S.T. (1996) Parental care in invertebrates. Advances in the Study of Behavior 25, 351. doi: 10.1016/S0065-3454(08)60329-0.Google Scholar
Tscharntke, T., Gathmann, A. & Steffan-Dewenter, I. (1998) Bioindication using trap-nesting bees and wasps and their natural enemies: community structure and interactions. Journal of Applied Ecology 35, 708719. doi: 10.1046/j.1365-2664.1998.355343.x.Google Scholar
Vicens, N. & Bosch, J. (2000) Pollinating Efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on “Red Delicious” Apple. Environmental Entomology 29, 235240. doi: 10.1093/ee/29.2.235.Google Scholar
Zurbuchen, A., Cheesman, S., Klaiber, J., Müller, A., Hein, S. & Dorn, S. (2010 a) Long foraging distances impose high costs on offspring production in solitary bees. The Journal of Animal Ecology 79, 674681. doi: 10.1111/j.1365-2656.2010.01675.x.Google Scholar
Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S. & Dorn, S. (2010 b) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biological Conservation 143, 669676. doi: 10.1016/j.biocon.2009.12.003.Google Scholar