Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-04T19:37:41.567Z Has data issue: false hasContentIssue false

Insecticide use and organophosphate resistance in the coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae)

Published online by Cambridge University Press:  09 March 2007

D.B. Fragoso
Affiliation:
Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG 36571-000, Brazil
R.N.C. Guedes*
Affiliation:
Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG 36571-000, Brazil Department of Biology, University of Leicester, Leicester, LE1 7RH, UK
M.C. Picanço
Affiliation:
Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG 36571-000, Brazil
L. Zambolim
Affiliation:
Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MGS 36571-000, Brazil
*
*Fax: (55) (31) 3899 2537 E-mail: [email protected]

Abstract

Increasing rates of insecticide use against the coffee leaf miner Leucoptera coffeella (Guérin-Méneville) and field reports on insecticide resistance led to an investigation of the possible occurrence of resistance of this species to some of the oldest insecticides used against it in Brazil: chlorpyrifos, disulfoton, ethion and methyl parathion. Insect populations were collected from ten sites in the state of Minas Gerais, Brazil and these populations were subjected to discriminating concentrations established from insecticide LC99s estimated for a susceptible standard population. Eight of the field-collected populations showed resistance to disulfoton, five showed resistance to ethion, four showed resistance to methyl parathion, and one showed resistance to chlorpyrifos. The frequency of resistant individuals in each population ranged from 10 to 93% for disulfoton, 53 to 75% for ethion, 23 to 76% for methyl parathion, and the frequency of resistant individuals in the chlorpyrifos resistant population was 35%. A higher frequency of individuals resistant to chlorpyrifos, disulfoton and ethion was associated with greater use of insecticides, especially other organophosphates. This finding suggests that cross-selection, mainly between organophosphates, played a major role in the evolution of insecticide resistance in Brazilian populations of L. coffeella. Results from insecticide bioassays with synergists (diethyl maleate, piperonyl butoxide and triphenyl phosphate) suggested that cytochrome P450-dependent monooxygenases may play a major role in resistance with minor involvement of esterases and glutathione S-transferases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, P.M.P., Lima, J.O.G. & Oliveira, L.M. (1992) Monitoramento da resistência do bicho-mineiro-do-café, Leucoptera coffeella (Lepidoptera: Lyonetiidae), a inseticidas em Minas Gerais. Anais da Sociedade Entomológica do Brasil 21, 7791.CrossRefGoogle Scholar
Andrei, E. (1999) Compêndio de defensivos agrícolas. 506 pp. São Paulo, Organizações Andrei.Google Scholar
Avilés, D.P. (1991) Avaliação das populações do bicho-mineiro do cafeeiro Perileucoptera coffeella. In (Lepidoptera: Lyonetiidae) e de seus parasitóides e predadores: metodologias de estudo e flutuação estacional. 127 pp. MS thesis, Universidade Federal de Viçosa, Brazil.Google Scholar
Bardner, R. & Mcharo, E.Y. (1988) Confirmation of resistance of the coffee leafminer Leucoptera meyricki Ghesquière (Lepidoptera: Lyonetiidae) to organophosphate insecticide sprays in Tanzania. Tropical Pest Management 34, 5254.CrossRefGoogle Scholar
Bernard, C.B. & Philogène, B.J.R. (1993) Insecticide synergists: role, importance, and perspectives. Journal of Toxicology and Environmental Health 38, 199223.CrossRefGoogle Scholar
Box, H.E. (1923) The bionomics of the white coffee-leaf miner, Leucoptera coffeella, Guér. (Lepidoptera: Lyonetidae), in Kenya colony. Bulletin of Entomological Research 14, 133145.CrossRefGoogle Scholar
Bradley, J.D. (1958) Taxonomic notes on Leucoptera meyricki Ghesquière and Leucoptera coffeella (Guérin-Méneville) (Lepidoptera, Lyonetiidae). Bulletin of Entomological Research 49, 417419.CrossRefGoogle Scholar
Brindley, W.A. & Selim, A.A. (1984) Synergism and antagonism in the analysis of insecticide resistance. Environmental Entomology 13, 348353.CrossRefGoogle Scholar
Conceição, M.Z. (2000) Manejo integrado em defesa vegetal. pp 180. in Zambolim, L. (ed.) Manejo integrado de doenças, pragas e plantas daninhas. Viçosa, Brazil, UFV.Google Scholar
ffrench-Constant, R.H. (1999) Target site mediated insecticide resistance: what questions remain? Insect Biochemistry and Molecular Biology 29, 397403.CrossRefGoogle Scholar
Green, D.S. (1984) A proposed origin of the coffee leaf-miner Leucoptera coffeella (Guérin-Méneville) (Lepidoptera: Lyonetiidae). Bulletin of the Entomological Society of America 86, 664667.Google Scholar
Guedes, R.N.C. & Fragoso, D.B. (1999) Resistência a inseticidas: bases gerais, situação e reflexões sobre o fenômeno em insetos-praga do cafeeiro. pp 99120. in Zambolim, L. (ed.) Livro de palestras do primeiro encontro sobre produção de café com qualidade. Viçosa, Brazil, UFV.Google Scholar
Guedes, R.N.C., Zhu, K.Y., Kambhampati, S. & Dover, B.A. (1997) An altered acetylcholinesterase conferring negative cross-insensitivity to different insecticidal inhibitors in organophosphate-resistant lesser grain borer, Rhyzopertha dominica. Pesticide Biochemistry and Physiology 58, 5562.CrossRefGoogle Scholar
Mey, W. (1994) Taxonomische bearbeintung der westpaläarktischen arten der gattung Leucoptera Hübner, [1825], s. l. (Lepidoptera, Lyonetiidae). Deustche Entomologische Zeitschrift 41, 173234.CrossRefGoogle Scholar
Michereff, M.F.F. (2000) Comportamento reprodutivo do bicho-mineiro-do-cafeeiro, Leucoptera coffeella. In (Guérin-Méneville, 1842) (Lepidoptera: Lyonetiidae). 46 pp. MS thesis, Universidade Federal de Viçosa, Brazil.Google Scholar
Mitchell, R.J. (1993) Path analysis: pollination. pp 211231. in Scheiner, S.M. & Gurevitch, J., (ed.) Design and analysis of ecological experiments. New York, Chapman & Hall.Google Scholar
Nestel, D., Dickschen, F. & Altieri, M.A. (1994) Seasonal and spatial population loads of a tropical insect: the case of the coffee leaf-miner in Mexico. Ecological Entomology 19, 159167.CrossRefGoogle Scholar
Notley, F.B. (1948) The Leucoptera leaf miners of coffee on Kilimanjaro. I & ndash; Leucoptera coffeella, Guér. Bulletin of Entomological Research 46, 399416.CrossRefGoogle Scholar
Raffa, K.F. & Priester, T.M. (1985) Synergists as research tools and control agents in agriculture. Journal of Agricultural Entomology 2, 2745.Google Scholar
Reis, P.R. & Souza, J.C. (1984) Pragas do café. In Informe Agropecuário. 10, 357.Google Scholar
Reis, P.R. & Souza, J.C. (1986) Influência das condições do tempo sobre a população de insetos e & aacute;caros. Informe Agropecuário 12, 2530.Google Scholar
Reis, R. Jr., DeSouza, O. & Vilela, E.F. (2000) Predators impairing the natural biological control of parasitoids. Anais da Sociedade Entomológica do Brasil 29, 507514.CrossRefGoogle Scholar
Roush, R.T. & Miller, G.L. (1986) Considerations for design of insecticide resistance monitoring programs. Journal of Economic Entomology 79, 293298.CrossRefGoogle Scholar
Samson, P.R. & Keating, J.A. (1987) Effect of relative humidity on the biological activity of insecticides in impregnated paper assays. Journal of Stored Products Research 23, 177181.CrossRefGoogle Scholar
SAS Institute. (1989) SAS/STAT user's guide, version 6. Cary, North Carolina, USA, SAS Institute.Google Scholar
Scott, J.G. (1990) Investigating mechanisms of insecticide resistance: methods, strategies, and pitfalls. pp 3957. in Roush, R.T. & Tabashnik, B.E., (ed.) Pesticide resistance in arthropods. New York, Chapman & Hall.CrossRefGoogle Scholar
Scott, J.G. (1999) Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology 29, 757777.CrossRefGoogle ScholarPubMed
Silvestri, F. (1943) Conpendio di entomologia applicata. Parte speciali, vol. II (Fogli 1–32). 512 pp. Portici, Italy, F. Silvestri.Google Scholar
Siqueira, H.A.A., Guedes, R.N.C. & Picanço, M.C. (2000) Insecticide resistance in populations of Tuta absoluta (Lepidóptera: Gelechiidae). Agricultural and Forest Entomology 2, 147153.CrossRefGoogle Scholar
Siqueira, H.A.A., Guedes, R.N.C. & Picanço, M.C. (2000) Cartap resistance and synergism in populations of Tuta absoluta (Lep., Gelechiidae). Journal of Applied Entomology 124, 233238.CrossRefGoogle Scholar
Souza, J.C., Reis, P.R. & Rigitano, R.L.O. (1998) Bicho-mineiro do cafeeiro: biologia, danos e manejo integrado. 48 pp. Belo Horizonte, Brazil, EPAMIG.Google Scholar
Taylor, M. & Feyereisen, R. (1996) Molecular biology and evolution of resistance to toxicants. Molecular Biology and Evolution 13, 719734.CrossRefGoogle ScholarPubMed
Thomaziello, R.A. (1987) Manejo integrado de pragas, doenças e plantas daninhas em café. pp 155170 in. Anais do simpósio internacional de manejo integrado de pragas, doenças e plantas daninhas. Campinas, Brazil, ANDEF.Google Scholar
Zhu, K.Y. & Clark, J.M. (1995) Comparisons of kinetic properties of acetylcholinesease purified from azinphosmethyl-susceptible and resistant strains of Colorado potato beetle. Pesticide Biochemistry and Physiology 51, 5767.CrossRefGoogle Scholar