Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-15T23:21:28.521Z Has data issue: false hasContentIssue false

Insecticidal effects of extracts of Humulus lupulus (hops) L. cones and its principal component, xanthohumol

Published online by Cambridge University Press:  23 March 2017

T. Aydin*
Affiliation:
Agri İbrahim Cecen University, Faculty of Pharmacy, Department of Pharmacognosy, 04100 Agri, TR, Turkey
N. Bayrak
Affiliation:
Bozok University, Faculty of Agriculture, Department of Plant Protection, 66900 Yozgat, TR, Turkey
E. Baran
Affiliation:
Kilis 7 Aralık University, Faculty of Sciences & Arts, Department of Chemistry, 79000 Kilis, TR, Turkey
A. Cakir
Affiliation:
Kilis 7 Aralık University, Faculty of Sciences & Arts, Department of Chemistry, 79000 Kilis, TR, Turkey
*
*Author for correspondence Phone: +90 (472) 2159863 Fax: +90 (472) 2151182 E-mail: [email protected]

Abstract

Insecticidal effects of the dichloromethane, ethyl acetate, acetone, ethanol and methanol extracts of Humulus lupulus (hops) L. cones and its principal components, xanthohumol was investigated on five stored pests, Sitophilus granarius (L.), Sitophilus oryzae (L.), Acanthoscelides obtectus (Say.), Tribolium castaneum (Herbst) and Lasioderma serricorne (F.). The mortality of adults of the insects treated with 2, 5, 5, 10 and 20 mg ml̠−1 concentrations of the extracts and xanthuhumol was counted after 24, 48, 72, 96 and 120 h. In order to determine the toxic effects of the substances tested against all tested insects, durations for 50% mortality of the adults, and LD50 values were also determined in the first 48 h by probit analysis. Our results also showed that xanthohumol was more toxic against the pests in comparison with the extracts applications. LD50 values for xanthohumol were found to be low dose as compared with the extracts. Xanthohumol was more toxic against S. granarius (L.) with 6.8 µg of LD50 value. Among the extracts, methanol extract was less effective than other extracts against all tested insects. The ethyl acetate extract of H. lupulus cones was the most effective extract against the tested pests. The quantitative amounts of xanthohumol in the extracts were determined using a high-performance liquid chromatography. The quantitative data indicated that amount of xanthohumol in the extracts increased with increase of polarity of the solvents used from methanol to dichloromethane. The methanol extract contained the high amount of xanthohumol with 5.74 g/100 g extract (0.46 g/100 g plant sample).

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkan, M., Gokce, A. & Kara, K. (2015) Antifeedant activity and growth inhibition effects of some plant extracts against larvae of Colorado potato beetle [Leptinotarsa decemlineata Say (Col: Chyrsomelidae)] under laboratory conditions. Turkish Journal of Entomology 39, 345353.Google Scholar
Anonymous (2002) European Pharmacopoeia. 4th edn. Strasbourg, Council of Europe.Google Scholar
Arsene, A.L., Rodino, S., Butu, A., Petrache, P., Iordache, O. & Butu, M. (2015) Study on antimicrobial and antioxidant activity and phenolic content of ethanolic extract of Humulus lupulus . Farmacia 63, 851857.Google Scholar
Ashworth, J.R. (1993) The biology of Lasioderma serricorne . Journal of Stored Products Research 29, 291303.Google Scholar
Aydin, T., Cakir, A., Kazaz, C., Bayrak, N., Bayir, Y. & Taskesenligil, Y. (2014) Insecticidal metabolites from the rizomes of Veratrum album against adults of Colorado patato beetle, Leptinotarsa decemlineata . Chemistry & Biodiversity 11, 11921204.Google Scholar
Batta, Y. (2004) Control of rice weevil (Sitophilus oryzae L., Coleoptera: Curculionidae) with various formulations of Metarhizium anisopliae . Crop Protection 23, 103108.Google Scholar
Bedini, S., Flamini, G., Girardi, J., Cosci, F. & Conti, B. (2015) Not just for beer: evaluation of spent hops (Humulus lupulus L.) as a source of eco-friendly repellents for insect pests of stored foods. Journal of Pest Science 88, 583592.Google Scholar
Bedini, S., Flamini, G., Cosci, F., Ascrizzi, R., Benelli, G. & Conti, B. (2016). Cannabis sativa and Humulus lupulus essential oils as novel control tools against the invasive mosquito Aedes albopictus and fresh water snail Physella acuta . Industrial Crops and Products 85, 318323.Google Scholar
Bell, C.H. (2000) Fumigation in the 21st century. Crop Protection 19, 563569.Google Scholar
Cakir, A., Ozer, H., Aydin, T., Kordali, S., Tazegul Cavusoglu, A., Akcin, T., Mete, E. & Akcin, A. (2016) Phytotoxic and insecticidal properties of essential oils and extracts of four Achillea species. Records of Natural Products 10, 154167.Google Scholar
Cam, H., Gokce, A., Kadioglu, I., Yanar, Y., Demirtas, I., Goren, N. & Whalon, M.E. (2012) Residual toxicities and stomach poison effects of plant extracts to different stages of Colorado potato beetle [Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae)]. Turkish Journal of Entomology 36, 239254.Google Scholar
Chadwick, L., Pauli, G. & Farnsworth, N. (2006) The pharmacognosy of Humulus lupulus L.(hops) with an emphasis on estrogenic properties. Phytomedicine 13, 119131.Google Scholar
Chen, Q.H., Fu, M.L., Chen, M.M., Liu, J., Liu, X.J., He, G.Q. & Pu, S.C. (2012). Preparative isolation and purification of xanthohumol from hops (Humulus lupulus L.) by high-speed counter-current chromatography. Food Chemistry 132, 619623.Google Scholar
Clark, S.M., Vaitheeswaran, V., Ambrose, S.J., Purves, R.W. & Page, J.E. (2013) Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus). BMC Plant Biology 13, 12.Google Scholar
Dietz, B.M., Kang, Y.-H., Liu, G., Eggler, A.L., Yao, P., Chadwick, L.R., Pauli, G.F., Farnsworth, N.R., Mesecar, A.D. & van Breemen, R.B. (2005) Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chemical Research in Toxicology 18, 12961305.Google Scholar
Ebadollahi, A., Safaralizadeh, M.H., Pourmirza, A.A. & Gheibi, S.A. (2010) Toxicity of essential oil of Agastache foeniculum (Pursh) kuntze to Oryzaephilus surinamensis L. and Lasioderma serricorne F. Journal of Plant Protection Research 50, 215219.Google Scholar
Er, M.K., Gokce, A. & Whalon, M.E. (2009) Contact and ingestion toxicities of plant extracts to Thaumetopoea solitaria Frey. (Lepidoptera: Thaumetopoeidae). Journal of Pest Science 82, 9599.Google Scholar
Garcia, M., Donadel, O.J., Ardanaz, C.E., Tonn, C.E. & Sosa, M.E. (2005) Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum . Pest Management Science 61, 612618.Google Scholar
Gerhäuser, C. (2005) Broad spectrum antiinfective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Molecular Nutrition & Food Research 49, 827831.CrossRefGoogle ScholarPubMed
Gokce, A., Isaacs, R. & Whalon, M.E. (2006 a) Behavioural response of Colorado potato beetle (Leptinotarsa decemlineata) larvae to selected plant extracts. Pest Management Science 62, 10521057.CrossRefGoogle ScholarPubMed
Gokce, A., Whalon, M.E., Cam, H., Yanar, Y., Demirtas, I. & Goren, N. (2006 b) Plant extract contact toxicities to various developmental stages of Colorado potato beetles (Coleoptera: Chrysomelidae). Annals of Applied Biology 149, 197202.Google Scholar
Gokce, A., Stelinski, L.L., Isaacs, R. & Whalon, M.E. (2006 c) Behavioural and electrophysiological responses of grape berry moth (Lep., Tortricidae) to selected plant extracts. Journal of Applied Entomology 130, 509514.Google Scholar
Gokce, A., Whalon, M.E., Cam, H.T., Yanar, Y., Demirtas, İ. & Goren, N. (2007) Contact and residual toxicities of 30 plant extracts to Colorado potato beetle larvae. Archives of Phytopathology and Plant Protection 40, 441450.Google Scholar
Gokce, A., Isaacs, R. & Whalon, M.E. (2012) Dose–response relationships for the antifeedant effects of Humulus lupulus extracts against larvae and adults of the Colorado potato beetle. Pest Management Science 68, 476481.Google Scholar
Gorjanović, S., Pastor, F.T., Vasić, R., Novaković, M., Simonović, M., Milić, S. & Sužnjević, D. (2013) Electrochemical versus spectrophotometric assessment of antioxidant activity of hop (Humulus lupulus L.) products and individual compounds. Journal of Agricultural and Food Chemistry 61, 90899096.CrossRefGoogle ScholarPubMed
Jackowski, J., Hurej, M., Rój, E., Popłoński, J., Kośny, L. & Huszcza, E. (2015) Antifeedant activity of xanthohumol and supercritical carbon dioxide extract of spent hops against stored product pests. Bulletin of Entomological Research 105, 456461.Google Scholar
Karaca, I.C. & Gokce, A. (2014) Toxic and behavioural effects of plant extracts to greenhouse whitefly [Trialeurodes vaporariorum (Westw.) (Hemiptera: Aleyrodidae)]. Turkish Journal of Entomology 38, 459466.Google Scholar
Karakoc, O.C. & Gokce, A. (2012) Contact toxicities of plant extracts to Spodoptera littoralis (Lepidoptera: Noctuidae). Turkish Journal of Entomology 36, 423431.Google Scholar
Kavalier, A.R., Litt, A., Ma, C., Pitra, N.J., Coles, M.C., Kennelly, E.J. & Matthews, P.D. (2011) Phytochemical and morphological characterization of hop (Humulus lupulus L.) cones over five developmental stages using high performance liquid chromatography coupled to time-of-flight mass spectrometry, ultrahigh performance liquid chromatography photodiode array detection, and light microscopy techniques. Journal of Agricultural and Food Chemistry 59, 47834793.Google Scholar
Kordali, S., Kesdek, M. & Cakir, A. (2007) Toxicity of monoterpenes against larvae and adults of Colorado patato beetle, Leptinotarsa decemlineata say (Coleoptera: Chrysomelidae). Industrial Crops and Products 26, 278297.Google Scholar
Kordali, S., Cakir, A., Ozer, H., Cakmakci, R., Kesdek, M. & Mete, E. (2008) Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technology 99, 87888795.Google Scholar
Liu, M., Hansen, P.E., Wang, G., Qiu, L., Dong, J., Yin, H., Qian, Z., Yang, M. & Miao, J. (2015) Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 20, 754779.Google Scholar
Masek, A., Chrzescijanska, E., Kosmalska, A. & Zaborski, M. (2014) Characteristics of compounds in hops using cyclic voltammetry, UV-VIS, FTIR and GC-MS analysis. Food Chemistry 156, 353361.Google Scholar
Masolwa, P.E. & Nchimbi, S. (1991) Distribution patterns of bean bruchids Zabrotes subfasciatus (Boh.) and Acanthoscelides obtectus (Say) in some parts of Tanzania. Proceedings of the Tenth Bean Research Workshop 6, 6871.Google Scholar
Olas, B., Kolodziejczyk, J., Wachowicz, B., Jędrejek, D., Stochmal, A. & Oleszek, W. (2011) The extract from hop cones (Humulus lupulus) as a modulator of oxidative stress in blood platelets. Platelets 22, 345352.Google Scholar
Onder, F.C., Ay, M., Turkoglu, S.A., Kockar, F.T. & Celik, A. (2016) Antiproliferative activity of Humulus lupulus extracts on human hepatoma (Hep3B), colon (HT-29) cancer cells and proteases, tyrosinase, beta-lactamase enzyme inhibition studies. Journal of Enzyme Inhibition and Medicinal Chemistry 31, 9098.Google Scholar
Sławinska-Brych, A., Król, S.K., Dmoszyńska-Graniczka, M., Zdzisińska, B., Stepulak, A. & Gagoś, M. (2015) Xanthohumol inhibits cell cycle progression and proliferation of larynx cancer cells in vitro . Chemico-Biological Interactions 240, 110118.Google Scholar
Stejskal, V., Hubert, J., Aulicky, R. & Kucerova, Z. (2015) Overview of present and past and pest-associated risks in stored food and feed products: European perspective. Journal of Stored Products Research 64, 122132.Google Scholar
Stompor, M., Dancewicz, K., Gabryś, B. & Anioł, M. (2015) Insect antifeedant potential of xanthohumol, isoxanthohumol, and their derivatives. Journal of Agricultural and Food Chemistry 63, 67496756.CrossRefGoogle ScholarPubMed
Taniguchi, Y., Yamada, M., Taniguchi, H., Matsukura, Y. & Shindo, K. (2015) Chemical characterization of beer aging products derived from hard resin components in hops (Humulus lupulus L.). Journal of Agricultural and Food Chemistry 63, 1018110191.Google Scholar
Tozlu, E., Cakir, A., Kordali, S., Tozlu, G., Ozer, H. & Aytus Akcin, T. (2011) Chemical compositions and insecticidal effects of essential oils isolated from Achillea gypsicola, Satureja hortensis, Origanum acutidens and Hypericum scabrum against broadbean weevil (Bruchus dentipes). Scientia Horticulturae 130, 917.Google Scholar
Venè, R., Benelli, R., Minghelli, S., Astigiano, S., Tosetti, F. & Ferrari, N. (2012) Xanthohumol impairs human prostate cancer cell growth and invasion and diminishes the incidence and progression of advanced tumors in TRAMP mice. Molecular Medicine 18, 12921302.Google Scholar
Verzele, M., Stockx, J., Fontijn, F. & Anteunis, M. (1957) Xanthohumol, a new natural chalkone. Bulletin des Sociétés Chimiques Belges 66, 452475.Google Scholar
Ware, G.W. (1986) Fundamentals of Pesticides: A Self Instruction Guide. Fresno, Thomson Publications.Google Scholar
Yanar, D., Kadioglu, I. & Gokce, A. (2011) Acaricidal effects of different plant extracts on two-spotted spider mite (Tetranychus urticae Koch). African Journal of Biotechnology 10, 1174511750.Google Scholar
Yildirim, E. (2012) Pests of Stored Product and their Control Methods. 3rd edn. Erzurum, Atatürk University Agricultural Faculty Press, p. 123.Google Scholar
Yoshimaru, T., Komatsu, M., Tashiro, E., Imoto, M., Osada, H., Miyoshi, Y., Honda, J., Sasa, M. & Katagiri, T. (2014) Xanthohumol suppresses oestrogen-signalling in breast cancer through the inhibition of BIG3–PHB2 interactions. Scientific Reports 4, 7355.Google Scholar
Zanoli, P. & Zavatti, M. (2008) Pharmacognostic and pharmacological profile of Humulus lupulus L. Journal of Ethnopharmacology 116, 383396.Google Scholar
Zhao, F., Watanabe, Y., Nozawa, H., Daikonnya, A., Kondo, K. & Kitanaka, S. (2005) Prenylflavonoids and phloroglucinol derivatives from hops (Humulus lupulus). Journal of Natural Products 68, 4349.Google Scholar
Zhao, X.Q., Jiang, K., Liang, B. & Huang, X.Q. (2016) Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-kappa B/p53-apoptosis signaling pathway. Oncology Reports 35, 669675.Google Scholar
Supplementary material: File

Aydin supplementary material

Figure 1

Download Aydin supplementary material(File)
File 25.1 KB
Supplementary material: File

Aydin supplementary material

Tables S1-S5

Download Aydin supplementary material(File)
File 34.1 KB
Supplementary material: File

Aydin supplementary material

Table S6

Download Aydin supplementary material(File)
File 13.4 KB