Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T19:02:49.314Z Has data issue: false hasContentIssue false

Influence of environment and climate on occurrence of the cixiid planthopper Hyalesthes obsoletus, the vector of the grapevine disease ‘bois noir’

Published online by Cambridge University Press:  29 April 2013

Bernd Panassiti
Affiliation:
State Institute of Viticulture and Oenology, Freiburg, Germany
Michael Breuer*
Affiliation:
State Institute of Viticulture and Oenology, Freiburg, Germany
Stacey Marquardt
Affiliation:
State Institute of Viticulture and Oenology, Freiburg, Germany
Robert Biedermann
Affiliation:
Institute for Environmental Modelling, Straubing, Germany
*
*Author for correspondence Phone: +49 - 761 - 4016579 Fax: +49 - 761 - 4016570 E-mail: [email protected]

Abstract

Species distribution models (SDMs), which are well established in many fields of biological research, are still uncommon in the agricultural risk analysis of pest insects. To exemplify the use of SDMs, we investigated the influence of environmental factors on the occurrence of Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae). The planthopper is the only known vector of the grapevine yellows disease ‘bois noir’. The study was conducted in 145 locations in the Baden region of southwest Germany. The planthopper was surveyed on host plant patches, consisting of stinging nettle and/or bindweeds. We used a stratified modelling framework where (1) species presence–absence data were related to an extensive environmental dataset using logistic regressions; and (2) different types of average models were developed based on an information theoretic method. The results show that the incidence of H. obsoletus is associated to above- as well as below-ground environmental factors, particularly to the amount of fine soil and average annual precipitation. This result was consistent across all average models. The relative importance of other environmental variables was dependent upon the average model under consideration and thus may vary according to their intended use, either the explanation of habitat requirements or the prediction and mapping of occurrence risks. The study showed that SDMs offer a quantification of species’ habitat requirements and thus, could represent a valuable tool for pest management purposes. By providing examples of current issues of grapevine pests in viticulture, we discuss the use of SDMs in agricultural risk analysis and highlight their advantages and caveats.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alma, A. (2002) Auchenorrhyncha as pests on grapevine. Denisia 4, 531538.Google Scholar
Altieri, M.A. (1999) The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment 74, 1931.Google Scholar
Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling 157, 101118.Google Scholar
Beanland, L., Noble, R. & Wolf, T.K. (2006) Spatial and temporal distribution of North American grapevine yellows disease and of potential vectors of the causal phytoplasmas in Virginia. Environmental Entomology 35, 332344.CrossRefGoogle Scholar
Becker, N. & Kannenberg, J. (1979) Das Weinland Baden – sein Klima, seine Landschaft und seine Böden. Der Badische Winzer 5, 170194.Google Scholar
Biedermann, R. (2002) Leafhoppers (Hemiptera, Auchenorrhyncha) in fragmented habitats. Denisia 4, 523530.Google Scholar
Biedermann, R. (2004) Patch occupancy of two hemipterans sharing a common host plant. Journal of Biogeography 31, 11791184.Google Scholar
Biedermann, R. & Niedringhaus, R. (2004) The Planthoppers and Leafhoppers of Germany – Identification Key to All Species. Scheeßel, Germany, WABV-Verlag.Google Scholar
Biedermann, R., Achtziger, R., Nickel, H. & Stewart, A.J.A. (2005) Conservation of grassland leafhoppers: a brief review. Journal of Insect Conservation 9, 229243.Google Scholar
Black, C.A. (1965) Methods of Soil Analysis Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling. Madison, USA, American Society of Agronomy.Google Scholar
Boudon-Padieu, E. & Maixner, M. (2007) Potential effects of climate change on distribution and activity of insect vectors of grapevine pathogens. pp. 18 in Global warming, which potential impacts on the vineyards?. 28–30 March 2007, Dijon, France, Université de Bourgogne.Google Scholar
Bressan, A., Turata, R., Maixner, M., Spiazzi, S., Boudon-Padieu, E. & Girolami, V. (2007) Vector activity of Hyalesthes obsoletus living on nettles and transmitting a stolbur phytoplasma to grapevines: a case study. Annals of Applied Biology 150, 331339.Google Scholar
Breuer, M., Röcker, J. & Michl, G. (2008) Die Schwarzholzkrankheit kommt per Zikade. Der Badische Winzer 1, 2224.Google Scholar
Broennimann, O., Treier, U.A., Muller-Scharer, H., Thuiller, W., Peterson, A.T. & Guisan, A. (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters 10, 701709.Google Scholar
Buckland, S.T., Burnham, K.P. & Augustin, N.H. (1997) Model selection: an integral part of inference. Biometrics 53, 603618.Google Scholar
Burnham, K.P. & Anderson, D.R. (2002) Model selection and multi model interference: a practical information-theoretic approach. New York, USA, Springer-Verlag.Google Scholar
Cammell, M.E. & Knight, J.D. (1992) Effects of climatic-change on the population dynamics of crop pests. Advances in Ecological Research 22, 117162.CrossRefGoogle Scholar
Cannon, R.J.C. (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biology 4, 785796.Google Scholar
Cargnus, E., Pavan, F., Mori, N. & Martini, M. (2012) Identification and phenology of Hyalesthes obsoletus (Hemiptera: Auchenorrhyncha: Cixiidae) nymphal instars. Bulletin of Entomological Research 102, 504514.CrossRefGoogle ScholarPubMed
Caudwell, A. (1961) Étude sur la maladie du bois noir de la vigne: ses rapports avec la Flavescence dorée. Annales des Epiphyties 12, 241262.Google Scholar
Cini, A., Ioriatti, C. & Anfora, G. (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bulletin of Insectology 65, 149160.Google Scholar
Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement 30, 3746.Google Scholar
Coudun, C., Gegout, J.C., Piedallu, C. & Rameau, J.C. (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. Journal of Biogeography 33, 17501763.Google Scholar
Danielson, R.E. & Sutherland, P.L. (1986) Porosity. pp. 443461in Klute, A. (Ed.) Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Madison, USA, Soil Science Society of America.Google Scholar
Daire, X., Boudon-Padieu, E., Berville, A., Schneider, B. & Caudwell, A. (1992) Cloned DNA probes for detection of grapevine Flavescence dorée mycoplasma-like organism (Mlo). Annals of Applied Biology 121, 95103.Google Scholar
De Marco, P., Diniz, J.A.F. & Bini, L.M. (2008) Spatial analysis improves species distribution modelling during range expansion. Biology Letters 4, 577580.Google Scholar
De Meyer, M., Robertson, M.P., Mansell, M.W., Ekesi, S., Tsuruta, K., Mwaiko, W., Vayssières, J.-F. & Peterson, A.T. (2010) Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera, Tephritidae). Bulletin of Entomological Research 100, 3548.Google Scholar
Denno, R.F. & Roderick, G.K. (1990) Population biology of planthoppers. Annual Review of Entomology 35, 489520.Google Scholar
Dodson, R. & Marks, D. (1997) Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Research 8, 120.Google Scholar
Dormann, C.F., Blaschke, T., Lausch, A., Schröder, B. & Söndgerath, D. (2004) Habitatmodelle – Methodik, Anwendung, Nutzen. Leipzig, Germany, Helmholtz-Zentrum für Umweltforschung UFZ.Google Scholar
Dormann, C.F., McPherson, J.M., Araujo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., Kuhn, I., Ohlemuller, R., Peres-Neto, P.R., Reineking, B., Schroder, B., Schurr, F.M. & Wilson, R. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609628.Google Scholar
Duyck, P.F., David, P. & Quilici, S. (2006) Climatic niche partitioning following successive invasions by fruit flies in La Réunion. Journal of Animal Ecology 75, 518526.Google Scholar
Duyck, P.-F., Dortel, E., Vinatier, F., Gaujoux, E., Carval, D. & Tixier, P. (2012) Effect of environment and fallow period on Cosmopolites sordidus population dynamics at the landscape scale. Bulletin of Entomological Research 102, 583588.Google Scholar
Ferrier, S., Drielsma, M., Manion, G. & Watson, G. (2002) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modelling. Biodiversity and Conservation 11, 23092338.Google Scholar
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24, 3849.Google Scholar
Fielding, A.H. & Haworth, P.F. (1995) Testing the generality of bird-habitat models. Conservation Biology 9, 14661481.Google Scholar
Fitzpatrick, M.C., Weltzin, J.F., Sanders, N.J. & Dunn, R.R. (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Global Ecology and Biogeography 16, 2433.Google Scholar
Franklin, J. (2009) Mapping Species Distributions: Spatial Inference and Prediction. Cambridge, UK, Cambridge University Press.Google Scholar
Gallien, L., Douzet, R., Pratte, S., Zimmermann, N.E. & Thuiller, W. (2012) Invasive species distribution models – how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography 21, 11261136.CrossRefGoogle Scholar
Graham, M.H. (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84, 28092815.Google Scholar
Guerra, B. & Steenwerth, K. (2012) Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: a review. American Journal of Enology and Viticulture 63, 149164.Google Scholar
Guisan, A. & Theurillat, J.P. (2000) Equilibrium modeling of alpine plant distribution: how far can we go? Phytocoenologia 30, 353384.Google Scholar
Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 9931009.Google Scholar
Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135, 147186.CrossRefGoogle Scholar
Hamada, E., Ghini, R., Rossi, P., Júnior, M.J.P. & Fernandes, J.L. (2008) Climatic risk of grape downy mildew (Plasmopara viticola) for the state of São Paulo, Brazil. Scientia Agricola 65, 6064.Google Scholar
Hanley, J.A. & McNeil, B.J. (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 2936.Google Scholar
Harrell, F.E.J. (2001) Regression Modeling Strategies – with Applications to Linear Models, Logistic Regression, and Survival Analysis. New York, USA, Springer.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.Google Scholar
Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2011) Dismo: Species Distribution Modeling. R package version 0.7–15. http://cran.r-project.org/web/packages/dismo/index.html.Google Scholar
Hosmer, D.W. & Lemeshow, S. (2000) Applied Logistic Regression. New York, USA, John Wiley and Sons.CrossRefGoogle Scholar
Huffaker, C.B. & Gutierrez, A.P. (1999) Ecological Entomology. New York, USA, John Wiley and Sons.Google Scholar
Johannesen, J., Lux, B., Michel, K., Seitz, A. & Maixner, M. (2008) Invasion biology and host specificity of the grapevine yellows disease vector Hyalesthes obsoletus in Europe. Entomologia experimentalis et applicata 126, 217227.CrossRefGoogle Scholar
Juliano, S.A., O'Meara, G.F., Morrill, J.R. & Cutwa, M.M. (2002) Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130, 458469.Google Scholar
Langer, M. & Maixner, M. (2004) Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RELP-analysis of non-ribosomal DNA. Vitis 43, 191199.Google Scholar
Langer, M., Darimont, H. & Maixner, M. (2003) Control of phytoplasma vectors in organic viticulture. IOBC/WPRS Bulletin 26, 197203.Google Scholar
Leather, S.R., Walters, K.F.A. & Bale, J.S. (1993) The Ecology of Insect Overwintering. Cambridge, UK, Cambridge University Press.Google Scholar
Lee, I.M., Gundersen-Rindal, D.E., Davis, R.E. & Bartoszyk, I.M. (1998) Revised classification scheme of phytoplasmas based an RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology 48, 11531169.CrossRefGoogle Scholar
Lessio, F., Tedeschi, R. & Alma, A. (2007) Population dynamics, host plants and infection rate with stolbur phytoplasma of Hyalesthes obsoletus Signoret in north-western Italy. Journal of Plant Pathology 89, 97102.Google Scholar
Maixner, M. (2006) Die Schwarzholzkrankheit der Rebe. Schweizerische Zeitschrift für Obst – und Weinbau 17, 47.Google Scholar
Maixner, M. (2007) Biology of Hyalesthes obsoletus and approaches to control this soilborne vector of bois noir disease. IOBC/WPRS Bulletin 30, 39.Google Scholar
Maixner, M. (2010) Phytoplasma epidemiological systems with multiple plant hosts. pp. 213232in Weintraub, P.G. & Jones, P. (Eds) Phytoplasmas Genomes, Plant Hosts, and Vectors. Cambridge, USA, CABI North American Office.Google Scholar
Maixner, M. & Langer, M. (2006) Prediction of the flight of Hyalesthes obsoletus, vector of stolbur phytoplasma, using temperature sums. Integrated Protection in Viticulture, IOBC/wprs Bulletin 29, 161166.Google Scholar
Maixner, M., Ahrens, U. & Seemüller, E. (1994) Detection of mycoplasmalike organisms associated with a yellows disease of grapevine in Germany. Journal of Phytopathology 142, 110.Google Scholar
Maixner, M., Langer, M. & Gerhard, Y. (2006) Epidemiological characteristics of bois noir type I. pp. 8687 in 15th ICVG Conference, Stellenbosch, South Africa, South African Society for Enology and Viticulture.Google Scholar
Manel, S., Dias, J.M., Buckton, S.T. & Ormerod, S.J. (1999) Alternative methods for predicting species distribution: an illustration with Himalayan river birds. Journal of Applied Ecology 36, 734747.Google Scholar
McCullagh, P. & Nelder, J.A. (1989) Generalized Linear Models. Boca Raton, USA, Chapman and Hall.Google Scholar
Meentemeyer, R., Rizzo, D., Mark, W. & Lotz, E. (2004) Mapping the risk of establishment and spread of sudden oak death in California. Forest Ecology and Management 200, 195214.Google Scholar
Meyer, C.B. & Thuiller, W. (2006) Accuracy of resource selection functions across spatial scales. Diversity and Distributions 12, 288297.CrossRefGoogle Scholar
Mori, N., Pavan, F., Reggiani, N., Bacchiavini, M., Mazzon, L., Paltrinieri, S. & Bertaccini, A. (2011) Correlation of bois noir disease with nettle and vector abundance in northern Italy vineyards. Journal of Pest Science 85, 16.Google Scholar
Morris, M.G. (1981 a) Responses of grassland invertebrates to management by cutting. III. Adverse effects on Auchenorhyncha. Journal of Applied Ecology 18, 107123.Google Scholar
Morris, M.G. (1981 b) Responses of grassland invertebrates to management by cutting: IV positive responses of Auchenorhyncha. Journal of Applied Ecology 18, 763771.Google Scholar
Nagelkerke, N.J.D. (1991) A note on a general definition of the coefficient of determination. Biometrika 78, 691692.Google Scholar
Neter, J., Wasserman, W. & Kutner, M.H. (1989) Applied Linear Regression Models. Boston, USA, Burr Ridge.Google Scholar
Palermo, S., Elekes, M., Botti, S., Ember, I., Alma, A., Orosz, A., Bertaccini, A. & Kolber, M. (2004) Presence of stolbur phytoplasma in cixiidae in Hungarian vineyards. Vitis 43, 201203.Google Scholar
Porter, J.H., Parry, M.L. & Carter, T.R. (1991) The potential effects of climatic change on agricultural insect pest. Agricultural and Forest Meteorology 57, 221240.Google Scholar
R Development Core Team (2011) R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Sanderson, R.A., Rushton, S.P., Cherrill, A.J. & Byrne, J.P. (1995) Soil, vegetation and space: an analysis of their effects on the invertebrate communities of a moorland in north-east England. Journal of Applied Ecology 32, 506518.Google Scholar
Schlichting, E., Blume, H.-P. & Stahr, K. (1995) Bodenkundliches Praktikum: eine Einführung in pedologisches Arbeiten für Ökologen, insbesondere Land – und Forstwirte, und für Geowissenschaftler. Berlin, Germany, Blackwell Wissenschafts-Verlag.Google Scholar
Schvester, D., Carle, P. & Moutous, G. (1963) Transmission de la Flavescence dorée de la vigne par Scaphoideus littoralis Ball. Annales des Epiphyties 14, 175198.Google Scholar
Sergel, R. (1986) Ein weiterer Nachweis der Cixiide Hyalesthes obsoletus Signoret in Franken (Homoptera: Auchenorrhyncha: Fulgoroidea). Abhandlugen des Naturwissenschaftlichen Vereins Würzburg 25, 8182.Google Scholar
Sforza, R., Clair, D., Daire, X., Larrue, J. & Boudon-Padieu, E. (1998) The role of Hyalesthes obsoletus (Hemiptera: Cixiidae) on the occurrence of bois noir of grapevines in France. Journal of Phytopathology – Phytopathologische Zeitschrift 146, 549556.Google Scholar
Sforza, R., Bourgoin, T., Wilson, S.W. & Boudon-Padieu, E. (1999) Field observations, laboratory rearing and description of immatures of the planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae). European Journal of Entomology 96, 409418.Google Scholar
Sharon, R., Soroker, V., Wesley, S.D., Zahavi, T., Harari, A. & Weintraub, P.G. (2005) Vitex agnus-castus is a preferred host plant for Hyalesthes obsoletus. Journal of Chemical Ecology 31, 10511063.Google Scholar
Sponagel, H. (2005) Bodenkundliche Kartieranleitung. Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Staatlichen Geologischen Diensten der Bundesrepublik Deutschland (ed.). Stuttgart, Germany, E. Schweizerbart'sche Verlagsbuchhandlung.Google Scholar
Steiner, F.M., Schlick-Steiner, B.C., VanDerWal, J., Reuther, K.D., Christian, E., Stauffer, C., Suarez, A.V., Williams, S.E. & Crozier, R.H. (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Diversity and Distributions 14, 538545.Google Scholar
Stewart, A.J.A. (2002) Techniques for sampling Auchenorrhyncha in grasslands. Denisia 4, 491512.Google Scholar
Strauss, B. & Biedermann, R. (2005) The use of habitat models in conservation of rare and endangered leafhopper species (Hemiptera, Auchenorrhyncha). Journal of Insect Conservation 9, 245259.Google Scholar
Strauss, B. & Biedermann, R. (2006) Urban brownfields as temporary habitats: driving forces for the diversity of phytophagous insects. Ecography 29, 928940.Google Scholar
VDLUFA (1991) Methodenbuch. Darmstadt, Germany, VDLUFA-Verlag.Google Scholar
Verbyla, D.L. & Litvaitis, J.A. (1989) Resampling methods for evaluating classification accuracy of wildlife habitat models. Environmental Management 13, 763787.Google Scholar
Weber, A. & Maixner, M. (1998) Survey of populations of the planthopper Hyalesthes obsoletus Sign. (Auchenorrhyncha, Cixiidae) for infection with the phytoplasma causing grapevine yellows in Germany. Journal of Applied Entomology – Zeitschrift für Angewandte Entomologie 122, 375381.Google Scholar
Weintraub, P.G. & Jones, P. (2010) Phytoplasmas Genomes, Plant Hosts, and Vectors. Cambridge, USA, CABI North American Office.Google Scholar
Whittaker, J. (1984) Model interpretation from the additive elements of the likelihood function. Applied Statistics-Journal of the Royal Statistical Society Series C 33, 5264.Google Scholar
Whittaker, J.B. & Tribe, N.P. (1998) Predicting numbers of an insect (Neophilaenus lineatus : Homoptera) in a changing climate. Journal of Animal Ecology 67, 987991.Google Scholar
Zabel, J. & Tscharntke, T. (1998) Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially? Oecologia 116, 419425.Google Scholar