Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T18:42:42.142Z Has data issue: false hasContentIssue false

Indirect evidence of pathogen-associated altered oocyte production in queens of the invasive yellow crazy ant, Anoplolepis gracilipes, in Arnhem Land, Australia

Published online by Cambridge University Press:  18 September 2017

M.D. Cooling*
Affiliation:
School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
B.D. Hoffmann
Affiliation:
CSIRO, Tropical Ecosystems Research Centre, PMB 44, Winnellie, NT 0822, Australia
M.A.M. Gruber
Affiliation:
School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
P.J. Lester
Affiliation:
School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
*
*Author for correspondence: Phone: +1 (778) 872-8328 Fax: +1 (604) 926-1891 E-mail: [email protected]

Abstract

Anoplolepis gracilipes is one of the six most widespread and pestiferous invasive ant species. Populations of this invader in Arnhem Land, Australia have been observed to decline, but the reasons behind these declines are not known. We investigated if there is evidence of a pathogen that could be responsible for killing ant queens or affecting their reproductive output. We measured queen number per nest, fecundity and fat content of queens from A. gracilipes populations in various stages of decline or expansion. We found no significant difference in any of these variables among populations. However, 23% of queens were found to have melanized nodules, a cellular immune response, in their ovaries and fat bodies. The melanized nodules found in dissected queens are highly likely to indicate the presence of pathogens or parasites capable of infecting A. gracilipes. Queens with nodules had significantly fewer oocytes in their ovaries, but nodule presence was not associated with low ant population abundances. Although the microorganism responsible for the nodules is as yet unidentified, this is the first evidence of the presence of a pathogenic microorganism in the invasive ant A. gracilipes that may be affecting reproduction.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaux, C., Folschweiller, M., McDonnell, C., Beslay, D., Cousin, M., Dussaubat, C., Brunet, J. & Le Conte, Y. (2011) Pathological effects of the microsporidian Nosema ceranae on honey bee queen physiology (Apis mellifera). Journal of Invertebrate Pathology 106, 380385.Google Scholar
Anderson, K., Sheehan, T., Eckholm, B., Mott, B. & DeGrandi-Hoffman, G. (2011) An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insectes Sociaux 58, 431444.Google Scholar
Azzami, K., Ritter, W., Tautz, J. & Beier, H. (2012) Infection of honey bees with acute bee paralysis virus does not trigger humoral or cellular immune responses. Archives of Virology 157, 689702.Google Scholar
Bailey, L. (1967) The incidence of viral diseases in the honey bee. Annals of Applied Biology 60, 4348.CrossRefGoogle ScholarPubMed
Baily, L. & Ball, B. (1991) Honey bee Pathology, 2nd edn. Academic Press, London.Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. Available online at http://CRAN.R-project.org/package=lme4.Google Scholar
Briano, J. (2005) Long-term studies of the red imported fire ant, Solenopsis invicta, infected with the microsporidia Vairimorpha invictae and Thelohania solenopsae in Argentina. Environmental Entomology 34, 124132.Google Scholar
Briano, J., Patterson, R. & Cordo, H. (1995 a) Long-term studies of the black imported fire ant (Hymenoptera: Formicidae) infected with a microsporidium. Environmental Entomology 24, 13281332.Google Scholar
Briano, J., Patterson, R. & Cordo, H. (1995 b) Relationship between colony size of Solenopsis richteri and infection with Thelohania solenopsae (Microsporidia: Thelohaniidae) in Argentina. Journal of Economic Entomology 88, 12331237.Google Scholar
Calleri, D., Rosengaus, R. & Traniello, J. (2006) Disease and colony establishment in the dampwood termite Zootermopsis angusticollis: survival and fitness consequences of infection in primary reproductive. Insectes Sociaux 53, 204211.Google Scholar
Cameron, S., Lozier, J., Strange, J., Koch, J., Cordes, N., Solter, L. & Griswold, T. (2011) Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences 108, 662667.Google Scholar
Carton, Y., Frey, F., Stanley, D., Vass, E. & Nappi, A. (2002) Dexamethasone inhibition of the cellular immune response of Drosophila melanogaster against a parasitoid. Journal of Parasitology 88, 405407.CrossRefGoogle ScholarPubMed
Chapuisat, M., Bocherens, S. & Rosset, H. (2004) Variable queen number in ant colonies: no impact on queen turnover, inbreeding, and population genetic differentiation in the ant Formica selysi. Evolution 58, 10641072.Google Scholar
Cooling, M. (2016) Population dynamics and pathogens of the invasive yellow crazy ant (Anoplolepis gracilipes) in Arnhem Land, Australia. Dissertation, Victoria University of Wellington.Google Scholar
Cooling, M. & Hoffmann, B. (2015) Here today, gone tomorrow: declines and local extinctions of invasive ant populations in the absence of intervention. Biological Invasions 17, 33513357.Google Scholar
Cooling, M., Gruber, M., Hoffmann, B., Sébastien, A. & Lester, P. (2016) A metatranscriptomic survey of the invasive yellow crazy ant, Anoplolepis gracilipes, identifies several potential viral and bacterial pathogens. Insectes Sociaux 64, 197207.CrossRefGoogle Scholar
Cox-Foster, D., Conlan, S., Holmes, E., Palacios, G., Evans, J., Moran, N., Quan, P., Briese, T., Hornig, M., Geiser, D., Martinson, V., vanEngelsdorp, D., Kalkstein, A., Drysdale, A., Hui, J., Zhai, J., Cui, L., Hutchison, S., Simons, J., Egholm, M., Pettis, J. & Lipkin, W. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283287.CrossRefGoogle ScholarPubMed
Dalecky, A., Gaume, L., Schatz, B., McKey, D. & Kjellberg, F. (2005) Facultative polygyny in the plant-ant Petalomyrmex phylax (Hymenoptera: Formicinae): sociogenetic and ecological determinants of queen number. Biological Journal of the Linnean Society 86, 133151.CrossRefGoogle Scholar
de Miranda, J., Cordoni, G. & Budge, G. (2010) The acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. Journal of Insect Pathology 103, S30S47.Google Scholar
Dillon, R. & Dillon, V. (2004) The gut bacteria of insects: nonpathogenic interactions. Annual Review of Entomology 49, 7192.Google Scholar
Dray, S. & Dufour, A. (2007) The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22, 120.CrossRefGoogle Scholar
Drescher, J., Feldhaar, H. & Bluthgen, N. (2011) Interspecific aggression and resource monopolization of the invasive ant Anoplolepis gracilipes in Malaysian Borneo. Biotropica 43, 9399.Google Scholar
Dunn, A., Torchin, M., Hatcher, M., Kotanen, P., Blumenthal, D., Byers, J., Coon, C., Frankel, V., Holt, R., Hufbauer, R., Kanarek, A., Schierenbeck, K., Wolfe, L. & Perkins, S. (2012) Indirect effects of parasites in invasions. Functional Ecology 26, 12621274.Google Scholar
Durmus, Y., Buyukguzel, E., Terzi, B., Tunaz, H., Stanley, D. & Buyukguzel, K. (2008) Eicosanoids mediate melanotic nodulation reactions to viral infection in larvae of the parasitic wasp, Pimpla turionellae. Journal of Insect Physiology 54, 1724.Google Scholar
Elmes, G., Wardlaw, J., Nielsen, G., Kipyatkov, V., Lopatina, E., Radchenko, A. & Barr, B. (1999) Site latitude influences on respiration rate, fat content and the ability of worker ants to rear larvae: a comparison of Myrmica rubra (Hymenoptera: Formicidae) populations over their European range. European Journal of Entomology 96, 117124.Google Scholar
Evans, J. & Pettis, J. (2005) Colony-level impacts of immune responsiveness in honey bees, Apis mellifera. Evolution 59, 22702274.Google ScholarPubMed
Fellous, S. & Lazzaro, B. (2010) Larval food quality affects adults (but not larval) immune gene expression independent of effects on general condition. Molecular Ecology 19, 14621468.Google Scholar
Ferdig, M., Spray, F., Li, J. & Christensen, B. (1993) Reproductive costs associated with resistance in a mosquito-filarial worm system. American Journal of Tropical Medicine and Hygiene 49, 756762.Google Scholar
Gatschenberger, H., Azzami, K., Tautz, J. & Beier, H. (2013) Antibacterial immune competence of honey bees (Apis mellifera) is adapted to different life stages and environmental risks. PLoS ONE 8, e66415.Google Scholar
Gruber, M. (2012) Genetic factors associated with variation in abundance of the invasive yellow crazy ant (Anoplolepis gracilipes). Dissertation, Victoria University of Wellington.Google Scholar
Gruber, M., Burne, A., Abbott, K., Pierce, R. & Lester, P. (2012) Population decline but increased distribution of an invasive ant genotype on a Pacific atoll. Biological Invasions 15, 599612.Google Scholar
Gruber, M., Cooling, M., Baty, J., Buckley, K., Friedlander, A., Quinn, O., Russell, J., Sébastien, A. & Lester, P. (2017) Single-stranded RNA viruses infecting the invasive Argentine ant, Linepithema humile. Scientific Reports 7, 3304.Google Scholar
Hahn, D. (2006) Two closely related species of desert carpenter ant differ in individual-level allocation to fat storage. Physiological and Biochemical Zoology 79, 847856.Google Scholar
Haines, I. & Haines, J. (1978) Pest status of the crazy ant, Anoplolepis longipes (Jerdon) (Hymenoptera: Formicidae), in the Seychelles. Bulletin of Entomological Research 68, 627.CrossRefGoogle Scholar
Herbers, J. & Stuart, R. (1996) Multiple queens in ant nests: impact on genetic structure and inclusive fitness. American Naturalist 147, 161187.Google Scholar
Hoffmann, B. (2014) Quantification of supercolonial traits in the yellow crazy ant Anoplolepis gracilipes. Journal of Insect Science 14, 25.CrossRefGoogle ScholarPubMed
Hoffmann, B. (2015) Integrating biology into invasive species management is a key principle for eradication success: the case of yellow crazy ant Anoplolepis gracilipes in northern Australia. Bulletin of Entomological Research 105, 141151.Google Scholar
Hölldobler, B. & Wilson, E.O. (1990) The Ants. Cambridge, Belknap Press.Google Scholar
Holway, D., Lach, L., Suarez, A., Tsutsui, N. & Case, T. (2002) The causes and consequences of ant invasions. Annual Review of Ecology, Evolution and Systematics 33, 181233.Google Scholar
Ingram, K. (2002 a) Plasticity in queen number and social structure in the invasive Argentine ant (Linepithema humile). Evolution 56, 20082016.Google Scholar
Ingram, K. (2002 b) Flexibility in nest density and social structure in invasive populations of the Argentine ant, Linepithema humile. Oecologia 133, 492500.Google Scholar
Kaspari, M. (1993) Body size and microclimate use in Neotropical granivorous ants. Oecologia 96, 500507.Google Scholar
Lease, H. & Wolf, B. (2011) Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiological Entomology 36, 2938.Google Scholar
Lester, P., Bosch, P., Gruber, M., Kapp, E., Peng, L., Brenton-Rule, E., Buchanan, J., Stanislawek, W., Archer, M., Corley, J., Masciocchi, M., Van Oystaeyen, A. & Wenseleers, T. (2015) No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS ONE 10, e0121358.Google Scholar
McGlynn, T. (2010) Polygyny in thief ants responds to competition and nest limitation but not food resources. Insectes Sociaux 57, 2328.Google Scholar
Moran, M. (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 11, 403405.Google Scholar
Mullen, L. & Goldsworthy, G. (2006) Immune responses of locusts to challenge with the pathogenic fungus Metarhizium or high doses of laminarin. Journal of Insect Pathology 52, 389398.Google Scholar
Nguyen, B., Ribiere, M., vanEngelsdorp, D., Snoeck, C., Saegerman, C., Kalkstein, A., Schurr, F., Brostaux, Y., Faucon, J. & Haubruge, E. (2011) Effects of honey bee virus prevalence, Varroa destructor load and queen condition on honey bee colony survival over the winter in Belgium. Journal of Apicultural Research 50, 195202.Google Scholar
Nonacs, P. (1991) Less growth with more food: how insect-prey availability changes colony demographics in the ant, Camponotus floridanus. Journal of Insect Pathology 37(12), 891898.Google Scholar
Oi, D. & Valles, S. (2009) Fire ant control with entomopathogens in the USA. pp 237257 in Hajek, T., Glare, T. & O'Callaghan, M. (Eds.) Use of Microbes for Control and Eradication of Invasive Arthropods, vol 6. Dordrecht, The Netherlands, Springer.Google Scholar
Oldroyd, B. (2007) What's killing American honey bees? PLoS ONE 5(6), e168.Google Scholar
Porter, S., Valles, S. & Oi, D. (2013) Host specificity and colony impacts of the fire ant pathogen, Solenopsis invicta virus 3. Journal of Insect Pathology 114, 16.Google Scholar
R Core Team. (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available online at http://www.R-project.org.Google Scholar
Richards, M. & Packer, L. (1994) Trophic aspects of caste determination in Halictus ligatus, a primitively eusocial sweat bee. Behavioural Ecology and Sociobiology 34, 385391.Google Scholar
RNAlater Handbook. (2006) Qiagen Corporation, Velno.Google Scholar
Rolff, J. & Siva-Jothy, M. (2003) Invertebrate ecological immunology. Science 301, 472475.Google Scholar
Russell, V., Hervão, L. & Hervão, M. (2015) lsmeans: least-square means. R package version 2.16. Available online at http://CRAN.R-project.org/package=lsmeans.Google Scholar
Schmid-Hempel, P. (1998) Parasites in Social Insects. Princeton, Princeton University Press.Google Scholar
Sébastien, A., Gruber, M. & Lester, P. (2011) Prevalence and genetic diversity of three bacterial endosymbionts (Wolbachia, Arsenophonus, and Rhizobiales) associated with the invasive yellow crazy ant (Anoplolepis gracilipes). Insectes Sociaux 59, 3340.Google Scholar
Sébastien, A., Lester, P., Hall, R., Wang, J., Moore, N. & Gruber, M. (2015) Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen. Biology Letters 11, 20150610.Google Scholar
Siva-Jothy, M., Moret, Y. & Rolff, J. (2005) Insect immunity: an evolutionary ecology perspective. Advances in Insect Physiology 32, 148.Google Scholar
Stanley, D., Haas, E. & Miller, J. (2012) Eicosanoids: exploiting insect immunity to improve biological control programs. Insects 3, 492510.Google Scholar
Valles, S., Oi, D., Yu, F., Tan, X. & Buss, E. (2012) Metatranscriptomics and pyrosequencing facilitate discovery of potential viral natural enemies of the invasive Caribbean crazy ant, Nylanderia pubens. PLoS ONE 7(2), e31828.Google Scholar
Valles, S., Porter, S., Choi, M. & Oi, D. (2013) Successful transmission of Solenopsis invicta virus 3 to Solenopsis invicta fire ant colonies in oil, sugar and cricket bait formulations. Journal of Invertebrate Pathology 113, 198204.Google Scholar
vanEngelsdorp, D., Evans, J., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D. & Pettis, J. (2009) Colony collapse disorder: a descriptive study. PLoS ONE 4(8), e6481.Google Scholar
Wetterer, J. (2005) Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology 45(1), 7797.Google Scholar
Supplementary material: File

Cooling et al. supplementary material

Cooling et al. supplementary material 1

Download Cooling et al. supplementary material(File)
File 4.4 MB