Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T07:24:59.019Z Has data issue: false hasContentIssue false

Implications of using two natural enemies of Tuta absoluta (Lepidoptera: Gelechiidae) toward tomato yield enhancement

Published online by Cambridge University Press:  07 January 2019

M.A. Mirhosseini
Affiliation:
Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
Y. Fathipour*
Affiliation:
Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
M. Soufbaf
Affiliation:
Agricultural, Medical and Industrial Research School, Karaj, Iran
G.V.P. Reddy
Affiliation:
Department of Research Centers, Montana State University, Western Triangle Agricultural Research Center, 9546 Old Shelby Rd., P. O. Box 656, Conrad, MT 59425, USA
*
*Author for correspondence Phone: +98 21 48292301 Fax: +98 21 48292200 E-mail: [email protected]

Abstract

Tomato leaf miner (TLM), Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is one of the most destructive tomato pests worldwide. We tested quantity and quality of tomato fruits after simultaneous use of two biological control agents, the predatory mirid bug Nesidiocoris tenuis (Reuter) and the egg parasitoid Trichogramma brassicae Bezdenko against TLM. We varied the timing of predator releases (before or after pest establishment) and the number of parasitoids released (ten or 30 females per week per m2). The highest number of fruits per cage, percentage of undamaged fruits, total yield weight, and undamaged yield weight were all obtained with predator-in-first treatments, with or without parasitoid releases. Furthermore, measures of fruit quality were also highest in predator-in-first treatments, including, highest percentage of water, greatest proportional fresh weight of carbohydrates, most lycopene, most β-carotene, most flavonoids, and highest total chlorophyll. Thus, our findings support a predator-in-first augmentation approach for management of TLM.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alsaedi, G., Ashouri, A. & Talaei-Hassanloui, R. (2017) Assessment of two Trichogramma species with Bacillus thuringiensis var. krustaki for the control of the tomato leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) in Iran. Open Journal of Ecology 7, 112124.10.4236/oje.2017.72009Google Scholar
Arimura, G.I., Matsui, K. & Takabayashi, J. (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiology 50, 911923.10.1093/pcp/pcp030Google Scholar
Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiology 24, 115.10.1104/pp.24.1.1Google Scholar
Bicanic, D., Swarts, J., Luterotti, S., Pietraperzia, G., Doka, O. & de Rooij, H. (2004) Direct quantification of lycopene in products derived from thermally processed tomatoes: optothermal window as a selective, sensitive, and accurate analytical method without the need for preparatory steps. Analytical Chemistry 76, 52035207.Google Scholar
Biondi, A., Guedes, R.N.C., Wan, F.H. & Desneux, N. (2018) Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annual Review of Entomology 63, 239258.Google Scholar
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.10.1016/0003-2697(76)90527-3Google Scholar
Cabello, T., Gallego, J., Vila, E., Soler, A., Del Pino, M., Carnero, A., Hernandez-Suarez, E. & Polaszek, A. (2009) Biological control of the South American tomato pinworm, Tuta absoluta (Lep.: Gelechiidae), with releases of Trichogramma achaeae (Hym.: Trichogrammatidae) in tomato greenhouses of Spain. IOBC/WPRS Bulletin 49, 225230.Google Scholar
Cabello, T., Gallego, J.R., Fernandez, F.J., Gamez, M., Vila, E., Del Pino, M. & Hernandez–Suarez, E. (2012) Biological control strategies for the South American tomato moth (Lepidoptera: Gelechiidae) in greenhouse tomatoes. Journal of Economic Entomology 105, 20852096.Google Scholar
Cabello, T., Bonfil, F., Gallego, J.R., Fernandez, F.J., Gamez, M. & Garay, J. (2015) Can interactions between an omnivorous hemipteran and an egg parasitoid limit the level of biological control for the tomato pinworm? Environmental Entomology 44, 1226.Google Scholar
Calvo, F.J., Bolckmans, K., Stansly, P.A. & Urbaneja, A. (2009) Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. BioControl 54, 237246.10.1007/s10526-008-9164-yGoogle Scholar
Calvo, F.J., Bolckmans, K. & Belda, J.E. (2012 a) Release rate for a pre-plant application of Nesidiocoris tenuis for Bemisia tabaci control in tomato. BioControl 57, 809817.Google Scholar
Calvo, F.J., Lorente, M.J., Stansly, P.A. & Belda, J.E. (2012 b) Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomologia Experimentalis et Applicata 143, 111119.Google Scholar
Cascone, P., Carpenito, S., Slotsbo, S., Iodice, L., Sorensen, J.G., Holmstrup, M. & Guerrieri, E. (2015) Improving the efficiency of Trichogramma achaeae to control Tuta absoluta. BioControl 60, 761771.Google Scholar
Castane, C., Arno, J., Gabarra, R. & Alomar, O. (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biological Control 59, 2229.10.1016/j.biocontrol.2011.03.007Google Scholar
Chailleux, A., Desneux, N., Seguret, J., Khanh, H.D.T., Maignet, P. & Tabone, E. (2012) Assessing European egg parasitoids as a mean of controlling the invasive South American tomato pinworm Tuta absoluta. PLoS ONE 7, e48068.Google Scholar
Chailleux, A., Bearez, P., Pizzol, J., Amiens-Desneux, E., Ramirez-Romero, R. & Desneux, N. (2013) Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. Journal of Pest Science 86, 533541.Google Scholar
Desneux, N., Wajnberg, E., Wyckhuys, K.A., Burgio, G., Arpaia, S., Narvaez-Vasquez, C.A., Gonzalez-Cabrera, J., Ruescas, D.C., Tabone, E. & Frandon, J. (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83, 197215.10.1007/s10340-010-0321-6Google Scholar
Desneux, N., Luna, M.G., Guillemaud, T. & Urbaneja, A. (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. Journal of Pest Science 84, 403408.10.1007/s10340-011-0398-6Google Scholar
Do Thi Khanh, H., Chailleux, A., Tiradon, M., Desneux, N., Colombel, E. & Tabone, E. (2012) Using new egg parasitoids (Trichogramma spp.) to improve integrated management against Tuta absoluta. EPPO Bulletin 42, 249254.Google Scholar
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P. & Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350356.Google Scholar
Ebrahimi, E., Pintureau, B. & Shojai, M. (1998) Morphological and enzymatic study of the genus Trichogramma (hym. Trichogrammatidae) in Iran. Applied Entomology and Phytopathology 66, 122141.Google Scholar
El-Arnaouty, S., Pizzol, J., Galal, H., Kortam, M., Afifi, A., Beyssat, V., Desneux, N., Biondi, A. & Heikal, I. (2014) Assessment of two Trichogramma species for the control of Tuta absoluta in North African tomato greenhouses. African Entomology 22, 801809.Google Scholar
FAOSTAT (2017) Production Statistics. Available online at http://www.fao.org/faostat/en/#data/QC.Google Scholar
Gabarra, R., Arno, J., Lara, L., Verdu, M.J., Ribes, A., Beitia, F., Urbaneja, A., del Mar Tellez, M., Molla, O. & Riudavets, J. (2014) Native parasitoids associated with Tuta absoluta in the tomato production areas of the Spanish Mediterranean Coast. BioControl 59, 4554.10.1007/s10526-013-9545-8Google Scholar
Gingras, D. & Boivin, G. (2002) Effect of plant structure, host density and foraging duration on host finding by Trichogramma evanescens (Hymenoptera: Trichogrammatidae). Environmental Entomology 31, 11531157.Google Scholar
Hanley, M.E., Lamont, B.B., Fairbanks, M.M. & Rafferty, C.M. (2007) Plant structural traits and their role in antiherbivore defense. Perspectives in Plant Ecology, Evolution and Systematics 8, 157178.Google Scholar
Hassan, S.A. (1993) The mass rearing and utilization of Trichogramma to control lepidopterous pests: achievements and outlook. Pesticide Science 37, 387391.Google Scholar
Krizek, D.T., Britz, S.J. & Mirecki, R.M. (1998) Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. New Red Fire lettuce. Physiologia Plantarum 103, 17.Google Scholar
Lenfant, C., Ridray, G. & Schoen, L. (2000) Biopropagation of Macrolophus caliginosus Wagner for a quicker establishment in southern tomato greenhouses. IOBC/WPRS Bulletin 23, 247251.Google Scholar
Lichtenthaler, K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods in Enzymology 148, 350383.10.1016/0076-6879(87)48036-1Google Scholar
Lundgren, J., Heimpel, G. & Bomgren, S. (2002) Comparison of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) augmentation with organic and synthetic pesticides for control of cruciferous Lepidoptera. Environmental Entomology 31, 12311239.10.1603/0046-225X-31.6.1231Google Scholar
Messelink, G., Bloemhard, C., Hoogerbrugge, H., Schelt, J., Ingegno, B. & Tavella, L. (2015) Evaluation of mirid predatory bugs and release strategy for aphid control in sweet pepper. Journal of Applied Entomology 139, 333341.10.1111/jen.12170Google Scholar
Moezipour, M., Kafil, M. & Allahyari, H. (2008) Functional response of Trichogramma brassicae at different temperatures and relative humidities. Bulletin of Insectology 61, 245250.Google Scholar
Molla, O., Gonzalez-Cabrera, J. & Urbaneja, A. (2011) The combined use of Bacillus thuringiensis and Nesidiocoris tenuis against the tomato borer Tuta absoluta. BioControl 56, 883891.Google Scholar
Naranjo, S.E., Ellsworth, P.C., & Frisvold, G.B. (2015) Economic value of biological control in integrated pest management of managed plant systems. Annual Review of Entomology 60, 621645.Google Scholar
Parra, J.R. & Zucchi, R.A. (2004) Trichogramma in Brazil: feasibility of use after twenty years of research. Neotropical Entomology 33, 271281.10.1590/S1519-566X2004000300001Google Scholar
Roditakis, E., Vasakis, E., Garcia-Vidal, L., del Rosario Martinez-Aguirre, M., Rison, J.L., Haxaire-Lutun, M.O., Nauen, R., Tsagkarakou, A. & Bielza, P. (2018) A four-year survey on insecticide resistance and likelihood of chemical control failure for tomato leaf miner Tuta absoluta in the European/Asian region. Journal of Pest Science 91, 421435.Google Scholar
Roe, J.H. & Kuether, C.A. (1943) The determination of ascorbic acid in whole blood and urine through the 2, 4-dinitrophenylhydrazine derivative of dehydroascorbic acid. Journal of Biological Chemistry 147, 399407.Google Scholar
Sanchez, J. & Lacasa, A. (2008) Impact of the zoophytophagous plant bug Nesidiocoris tenuis (Heteroptera: Miridae) on tomato yield. Journal of Economic Entomology 101, 18641870.Google Scholar
Santos, A.D., Bueno, R.F., Vieira, S. & Bueno, A.F. (2011) Efficacy of insecticides on Tuta absoluta (Meyrick) and other pests in pole tomato. Bioassay 6, 15.Google Scholar
Seevers, P. & Daly, J. (1970) Studies on wheat stem rust resistance controlled at the Sr6 locus. I. The role of phenolic compounds. Phytopathology 60, 13221328.Google Scholar
SPSS (2011) IBM SPSS statistics for Windows, version 20.0. New York: IBM Corp.Google Scholar
Trottin-Caudal, Y., Baffert, V., Leyre, J.M. & Hulas, N. (2012) Experimental studies on Tuta absoluta (Meyrick) in protected tomato crops in France: biological control and integrated crop protection. EPPO Bulletin 42, 234240.Google Scholar
Urbaneja, A., Tapia, G., Fernandez, E., Sanchez, E., Contreras, J. & Bielza, P. (2003) Influence of the prey on the biology of Nesidiocoris tenuis (Hem.: Miridae). IOBC/WPRS Bulletin 26, 159160.Google Scholar
Urbaneja, A., Gonzalez-Cabrera, J., Arno, J. & Gabarra, R. (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Management Science 68, 12151222.Google Scholar
Urbaneja-Bernat, P., Alonso, M., Tena, A., Bolckmans, K. & Urbaneja, A. (2013) Sugar as nutritional supplement for the zoophytophagous predator Nesidiocoris tenuis. BioControl 58, 5764.Google Scholar
Usha Rani, P. & Jyothsna, Y. (2010) Biochemical and enzymatic changes in rice as a mechanism of defense. Acta Physiologiae Plantarum 32, 695701.Google Scholar
Wagner, G.J. (1979) Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology 64, 8893.Google Scholar
Wajnberg, E. & Hassan, S.A. (1994) Biological Control with Egg Parasitoids. Wallingford, Oxon, UK, CAB International.Google Scholar
War, A.R., Paulraj, M.G., War, M.Y. & Ignacimuthu, S. (2011) Jasmonic acid-mediated induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Journal of Plant Growth Regulation 30, 512523.Google Scholar