Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T09:52:37.131Z Has data issue: false hasContentIssue false

How does heat shock affect the life history traits of adults and progeny of the aphid parasitoid Aphidius avenae (Hymenoptera: Aphidiidae)?

Published online by Cambridge University Press:  27 January 2010

O. Roux*
Affiliation:
Laboratoire d'Écologie Fonctionnelle, UMR 5245 CNRS-UPS-INPT, Université Paul Sabatier, 31062Toulouse cedex 04, France Écologie des Forêts de Guyane (UMR-CNRS 8172), Campus agronomique, BP709, 97379Kourou cedex, France
C. Le Lann
Affiliation:
UMR 6553 ECOBIO, Université de Rennes I, Campus de Beaulieu, Avenue du Général Leclerc, 35 042Rennes cedex, France
J. J. M. van Alphen
Affiliation:
UMR 6553 ECOBIO, Université de Rennes I, Campus de Beaulieu, Avenue du Général Leclerc, 35 042Rennes cedex, France Institute of Biology Leiden, Van der Klaauw Laboratory, Kaiserstraat 63, 2311 GP LeidenPO Box 9516, 2300RALeiden, The Netherlands
J. van Baaren
Affiliation:
UMR 6553 ECOBIO, Université de Rennes I, Campus de Beaulieu, Avenue du Général Leclerc, 35 042Rennes cedex, France
*
*Author for correspondence Fax: (33) 594 594 35 65 22 E-mail: [email protected]

Abstract

Because insects are ectotherms, their physiology, behaviour and fitness are influenced by the ambient temperature. Any changes in environmental temperatures may impact the fitness and life history traits of insects and, thus, affect population dynamics. Here, we experimentally tested the impact of heat shock on the fitness and life history traits of adults of the aphid parasitoid Aphidius avenae and on the later repercussions for their progeny. Our results show that short exposure (1 h) to an elevated temperature (36°C), which is frequently experienced by parasitoids during the summer, resulted in high mortality rates in a parasitoid population and strongly affected the fitness of survivors by drastically reducing reproductive output and triggering a sex-dependent effect on lifespan. Heat stress resulted in greater longevity in surviving females and in shorter longevity in surviving males in comparison with untreated individuals. Viability and the developmental rates of progeny were also affected in a sex-dependent manner. These results underline the ecological importance of the thermal stress response of parasitoid species, not only for survival, but also for maintaining reproductive activities.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, D.H., Pertoldi, C., Scali, V. & Loeschcke, V. (2005) Heat stress and age induced maternal effects on wing size and shape in parthenogenetic Drosophila mercatorum. Journal of Evolutionary Biology 18, 884892.Google Scholar
Angilletta, M.J., Niewiarowski, P.H. & Navas, C.A. (2002) The evolution of thermal physiology in ectotherms. Journal of Thermal Biology 27, 249268.Google Scholar
Bezemer, M.T., Jones, T.H. & Knight, K.J. (1998) Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae. Oecologia 116, 128135.CrossRefGoogle ScholarPubMed
Cannon, R.J.C. (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on nonindigenous species. Global Change Biology 4, 785796.CrossRefGoogle Scholar
Chown, S.L. & Terblanche, J.S. (2006) Physiological diversity in insects: Ecological and evolutionary contexts. Advances in Insect Physiology 33, 50–152.Google Scholar
Dobzhansky, T. & Gould, S.J. (1982) Genetics and the Origin of Species. New York, USA, Columbia University Press.Google Scholar
Easterling, D.R., Evans, J.L., Groisman, P.Y., Karl, T.R., Kunkel, K.E. & Ambenje, P. (2000) Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society 81, 417425.Google Scholar
Ellers, J., Driessen, G. & Sevenster, J.G. (2000) The shape of the trade-off function between egg production and life span in the parasitoid Asobara tabida. Netherlands Journal of Zoology 50, 2936.Google Scholar
Folk, D.F., Zwollo, P., Rand, D.M. & Gilchrist, G.W. (2006) Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males. The Journal of Experimental Biology 209, 39643973.Google Scholar
Gibbs, A.G., Louie, A.K. & Ayala, J.A. (1998) Effects of temperature on cuticular lipids and water balance in a desert Drosophila: is thermal acclimation beneficial? The Journal of Experimental Biology 210, 7180.Google Scholar
Gomez, F.H., Bertoli, C.I., Sambucetti, P., Scannapieco, A.C. & Norry, F.M. (2009) Heat-induced hormesis in longevity as correlated response to thermal-stress selection in Drosophila buzzatii. Journal of Thermal Biology 34, 1722.CrossRefGoogle Scholar
Hadley, N.F. (1994) Water Relations of Terrestrial Arthropods. San Diego, California, USA, Academic Press.Google Scholar
Hance, T., van Baaren, J., Vernon, P. & Boivin, G. (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology 52, 107126.CrossRefGoogle Scholar
He, X.Z., Wang, Q. & Teulon, D.A.J. (2004) Emergence, sexual maturation and oviposition of Aphidius ervi (Hymenoptera: Aphidiidae). New Zealand Plant Protection 57, 214220.Google Scholar
Hercus, M.J., Loeschcke, V. & Rattan, S.I.S. (2003) Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 4, 149156.Google Scholar
Huang, L.-H., Chen, B. & Kang, L. (2007) Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis. Journal of Insect Physiology 53, 11991205.CrossRefGoogle ScholarPubMed
Jervis, M.A., Heimpel, G.E., Ferns, P.N., Harvey, J.A. & Kidd, N.A.C. (2001) Life-history strategies in parasitoid wasps: a comparative analysis of ‘ovigeny’. Journal of Animal Ecology 70, 442458.Google Scholar
Jørgensen, K.T., Sørensen, J.G. & Bundgaard, J. (2006) Heat tolerance and the effect of mild heat stress on reproductive characters in Drosophila buzzatii males. Journal of Thermal Biology 31, 280286.CrossRefGoogle Scholar
Khazaeli, A.A., Tatar, M., Pletcher, S.D. & Curtsinger, J.W. (1997) Heat-induced longevity extension in Drosophila. I. Heat treatment, mortality and thermotolerance. Journal of Gerontology 52A, B48B52.Google Scholar
Krebs, R.A. & Loeschcke, V. (1994) Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. Journal of Evolutionary Biology 7, 3949.Google Scholar
Krebs, R.A. & Thompson, K.A. (2005) A genetic analysis of variation for the ability to fly after exposure to thermal stress in Drosophila mojavensis. Journal of Thermal Biology 30, 335342.CrossRefGoogle Scholar
Krebs, R.A. & Thompson, K.A. (2006) Direct and correlated effects of selection on flight after exposure to thermal stress in Drosophila melanogaster. Genetica 128, 217225.Google Scholar
Lithgow, G.J., White, T.M., Melov, S. & Johnson, T.E. (1995) Thermotolerance and extended life span conferred by single-gene mutations and induced by thermal stress. Proceedings of the National Academy of Sciences USA 92, 75407544.Google Scholar
Magiafoglou, A. & Hoffmann, A.A. (2003) Cross-generation effects due to cold exposure in Drosophila serrata. Functional Ecology 17, 664672.Google Scholar
Markow, T.A. & Toolson, E.C. (1990) Temperature effects on epicuticular hydrocarbons and sexual isolation in Drosophila mojavensis. pp. 315331in Barker, J.S.F., Stamer, W.T. & MacIntyre, R.J. (Eds) Ecological and Evolutionary Genetics of Drosophila. New York, USA, Plenum.Google Scholar
Maynard Smith, J. (1958) Prolongation of the life of Drosophila subobscura by a brief exposure of adults to a high temperature. Nature 181, 496497.Google Scholar
McClure, M., Whistlecraft, J. & McNeil, J.N. (2007) Courtship behavior in relation to the female sex pheromone in the parasitoid, Aphidius ervi (Hymenoptera: Braconidae). Journal of Chemical Ecology 33, 19461959.CrossRefGoogle Scholar
McNeil, J.N. & Brodeur, J. (1995) Pheromone-mediated mating in the aphid parasitoid, Aphidius nigripes (Hymenoptera: aphididae). Journal of Chemical Ecology 21, 959972.Google Scholar
Palter, K.B., Watanabe, M., Stinson, L., Mahowald, A.P. & Craig, E.A. (1986) Expression and localization of Drosophila melanogaster HSP70 cognate proteins. Molecular and Cellular Biology 6, 11871203.Google Scholar
Patton, Z.J. & Krebs, R.A. (2001) The effect of thermal stress on the mating behavior of three Drosophila species. Physiological and Biochemical Zoology 74, 783788.CrossRefGoogle ScholarPubMed
Powell, S.J. & Bale, J.S. (2006) Effect of long-term and rapid cold hardening on the cold torpor temperature of an aphid. Physiological Entomology 31, 348352.Google Scholar
Quicke, D.L.J. (1997) Parasitic Wasps. London, UK, Kluwer Academic Publishers.Google Scholar
R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rohmer, C., David, J.R., Moreteau, B. & Joly, D. (2004) Heat induced male sterility in Drosophila melanogaster: adaptive genetic variations among geographic populations and role of the Y chromosome. Journal of Experimental Biology 207, 27352743.CrossRefGoogle ScholarPubMed
Scannapieco, A.C., Sørensen, J.G., Loeschcke, V. & Norry, F.M. (2007) Heat-induced hormesis in longevity of two sibling Drosophila species. Biogerontology 8, 315325.Google Scholar
Scott, M., Berrigan, D. & Hoffmann, A.A. (1997) Cost and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomologia Experimentalis et Applicata 85, 211219.CrossRefGoogle Scholar
Silbermann, R. & Tatar, M. (2000) Reproductive costs of heat shock protein in transgenic Drosophila melanogaster. Evolution 54, 20382045.Google Scholar
Sisodia, S. & Singh, B.N. (2006) Effect of exposure to short-term heat stress on survival and fecundity in Drosophila ananassae. Canadian Journal of Zoology 84, 895899.Google Scholar
Sørensen, J.G., Kristensen, T.N., Kristensen, K.V. & Loeschcke, V. (2007) Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster. Experimental Gerontology 42, 11231129.Google Scholar
van Baaren, J., Le Lann, C. & van Alphen, J.J.M. Consequences of climate change on aphid-based multi-trophic systems. in Kindlmann, P., Dixon, A.F.G. & Michaud, J.-P. (Eds) Aphid Biodiversity under Environmental Change: Patterns and Processes. Dordrecht, The Netherlands, Springer, in press.Google Scholar
Vannier, G. (1994) The thermobiological limits of some freezing intolerant insects – the supercooling and thermostupor points. Acta Oecologica-International Journal of Ecology 15, 3142.Google Scholar