Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T10:52:34.428Z Has data issue: false hasContentIssue false

Host suitability analysis of the bark beetle Scolytus amygdali (Coleoptera: Curculionidae: Scolytinae)

Published online by Cambridge University Press:  26 March 2015

A. Zeiri*
Affiliation:
Department of Biology, Faculty of Sciences of Bizerte, Bizerte, Tunisia
M.Z. Ahmed
Affiliation:
University of Florida, Institute of Food and Agricultural Sciences, Tropical Research and Education Center, 18905 SW 280th Street, Homestead, FL 33031, USA Department of Entomology, South China Agricultural University, 510640 Guangzhou, China
M. Braham
Affiliation:
Laboratory of Entomology, Regional Center of Research on Horticulture and Organic Agriculture, The University of Sousse, 4042 Chott-Mariem, Sousse, Tunisia
M. Braham
Affiliation:
Deparment of Olive tree Physiology, Institute of the Olive Tree station of Sousse, 40 Street Ibn Khouldoun 4061 Sousse, Tunisia
B.-L. Qiu
Affiliation:
Department of Entomology, South China Agricultural University, 510640 Guangzhou, China
*
*Author for correspondence Phone: 0021621676454 Fax: 00216 73 23 61 35 E-mail: [email protected]

Abstract

Scolytus amygdali is a polyphagous insect pest that feeds on fruit trees and forest trees. Our study assessed the host preference and reproductive potential of S. amygdali on four tree species: almond (Prunus dulcis), apricot (Prunus armeniaca), peach (Prunus persica), and plum (Prunus domestica). Females of S. amygdali produced maternal galleries that were longer on peach than the other three trees, and female fecundity was highest on peach. Females with longer maternal galleries produced more eggs, indicating a positive correlation between maternal gallery length and female fertility. The under-bark development time of S. amygdali is significantly shorter on plum (45 days) and almond (56 days) than on apricot (65 days) and peach (64 days). Despite this longer development time on peach, our results still suggest that, of the four types of tree tested, peach is the most preferred host for S. amygdali.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosta, S.J. (2006) On ecological fitting, plant–insect associations, herbivore host shifts, and host plant selection. Oikos 114, 556565.Google Scholar
Ahmed, M.Z., Naveed, M., Noor ul Ane, M., Ren, S.X., Barro, P.D. & Qiu, B.L. (2014) Host suitability comparison between the MEAM1 and AsiaII 1 cryptic species of Bemisia tabaci in cotton growing zones of Pakistan. Pest Management Science 70, 15311537.Google Scholar
Alford, D.V. (2007) Pests of Fruit Crops: A Color Handbook. London, Elsevier.Google Scholar
Ascher, K.R.S., Guervitz, E., Renneh, S. & Nemny, N.E. (1975) The penetration of females of the fruit bark beetle Scolytus mediterraneus Eggers into antifeedant-treated twigs in laboratory tests. Z Pflanzenb, Pflanzenschutz 82, 378383.Google Scholar
Balachowsky, A.S. (1963) Entomologie appliquée à l'Agriculture. France, Masson.Google Scholar
Beghami, R. (2010) Contribution à l’étude des insectes associés au dépérissement du cèdre de l'Atlas (Cedrus atlantica) dans la région des Aurès : cas de la Cédraie de Chelia. Diplôme de magistère en science agronomique. Algérie.Google Scholar
Belhabib, R., Lieutier, F., Ben Jamaa, M.L. & Nouira, S. (2009) Host selection and reproductive performance of Phloeosinus bicolor (Coleoptera: Curculionidae: Scolytinae) in indigenous and exotic Cupressus taxa in Tunisia. Canadian Entomologist 141, 595603.Google Scholar
Benazoun, A. (1983) Etude bioécologique sur les scolytes de l'amandier Ruguloscolytus amygdali Guerin (Col, Scolytidae) au Maroc. Thèse de doctorat d’état en sciences naturelles. France, Univ Paris VI.Google Scholar
Benazoun, A. (2004) Répartition des attaques de R. amygdali Guerin (Coleoptera Scolytidae) sur amandier dans la région de Tafraout. Actes de l'Institut agronomique et vétérinaire 24, 3544.Google Scholar
Benazoun, A. (2010) Effet de la plante hôte sur le développement de Ruguloscolytus amygdali Guerin (Coleoptera, Scolytidae). Revue AMPP 1, 4149.Google Scholar
Benazoun, A. & Schvester, D. (1990) Biologie et cycle de Scolytus (Ruguloscolytus) amygdali Guerin au Maroc. Actes de l'Institut agronomique et vétérinaire 10, 2134.Google Scholar
Ben-Yehuda, S. (2005) Factors affecting the almond bark beetle Scolytus amygdali Guerin (Scolytidae) aggregation, colonization and injury of host trees, with special emphasis on the aggregation pheromone of the beetle . Thesis. The Hebrew University.Google Scholar
Ben-Yehuda, S., Tolasch, T., Francke, W., Gries, R., Gries, G., Dunkelblum, D. & Mendel, Z. (2002) Aggregation pheromone of the almond bark beetle Scolytus amygdali (Coleoptera: Scolytidae). IOBC-WPRS Bulletins 25, 112.Google Scholar
Bernays, E.A. & Chapman, R.F. (1994) Host Plant Selection by Phytophagous Insects. New York, Chapman and Hall.Google Scholar
Bertheau, C., Sallé, A., Roux-Morabito, G., Garcia, J., Certain, G. & Lieutier, F. (2009) Preference–performance relationship and influence of plant relatedness on host use by Pityogenes chalcographus L. (Coleoptera: Scolytinae). Agricultural and Forest Entomology 11, 389396.Google Scholar
Bolu, H. & Legalov, A.A. (2008) On the Cucurlionoidea (Coleoptera) fauna of almond (Amygdalus Communis L.) orchards in South-eastern and Eastern Anatolia in Turkey. Baltic Journal of Coleopterology 8, 7586.Google Scholar
Borden, J.H. (1989) Semiochemicals and bark beetle populations: exploitation of natural phenomena by pest management strategists. Ecography 12, 501510.CrossRefGoogle Scholar
Bright, D.E. & Skidmore, R.E. (1997) A Catalog of Scolytidae and Platypodidae (Coleoptera). supplement 1. Canada, NRC-CNRC.Google Scholar
Buhroo, A.A. (2012) Host selection behavior and incidence of the bark beetle Scolytus kashmirensis (Coleoptera: Curculionidae: Scolytinae) attacking elm (Ulmus Spp.) trees in Kashmir. Forestry Studies in China 14, 224228.Google Scholar
Byers, J.A. (2012) Ecological interactions of bark beetles with host trees. Psyche, A Journal of Entomology, 2012, 3.Google Scholar
Chararas, C. (1973) Faculté d'adaptation d'Orthotomicus erosus Woll. á des conifères autres que ses essences hôtes habituelles. Comptes Rendus de l'Académie des Sciences, Serie III, Sciences de la Vie 271, 19041907.Google Scholar
Cherif, R. & Trigui, A. (1990) Ruguloscolytus amygdali Guerin [Scolytus amygdali], scolytid of fruit trees in Noyau in the mid-southern regions of Tunisia. Annales de l'Institut national de la recherche agronomique de Tunisie 63, 9 pp.Google Scholar
Coster, J.A. (1970) Certain aspects of pheromone release and aggregation behavior in the southern pin beetle (Coleoptera: Scolytidae) . Ph.D. Dissertation. Texas, A & M University.Google Scholar
Drumont, A., Gonzaléz, R., De Windt, N., Gregoire, J.C., De Proft, M. & Seutin, E. (2009) Semiochemicals and the integrated management of Ips typographus (L.) (Col., Scolytidae) in Belgium. Journal of Applied Entomology 114, 333337.Google Scholar
Gourevitz, E. & Ishaaya, I. (1972) Behavioural response of the fruit bark beetle Scolytus mediterraneus, to host plants. Entomologia Experimentalis et Applicata 15, 175182.Google Scholar
Harrison, G.D. (1987) Host plant discrimination and evolution of feeding preference in the Colorado Potato Beetle Leptinotarsa decemlineata . Physiological Entomology 12, 407415.Google Scholar
Jaenike, J. (1990) Host specialization in phytophagous insects. Annual Review of Ecology and Systematics 21, 243273.CrossRefGoogle Scholar
Janjua, N.A. & Samuel, C.K. (1941) Fruit pests of Baluchistan. Imperial Council of Agricultural Research Bulletin 42, 1228.Google Scholar
Kirkendall, L.R. (1983) The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zoological Journal of the Linnean Society 77, 293352.CrossRefGoogle Scholar
Lee, J.C. & Seybold, S.J. (2010) Host acceptance and larval competition in the banded and European Elm Bark Beetles, Scolytus schevyrewi and S. multistriatus (Coleoptera: Scolytidae): potential mechanisms for competitive displacement between invasive species. Journal of Insect Behavior 23, 1934.Google Scholar
Lekander, B., Bejer-Petersen, B., Kangas, E. & Bakke, A. (1977) The distribution of bark beetles in the Nordic countries. Acta Entomologica Fennica 32, 137.Google Scholar
Levy, E.C., Ishaaya, I., Gurevitz, E., Cooper, R. & Lavie, D. (1974) Isolation and identification of host compounds eliciting attraction and bite stimuli in the fruit tree bark beetle, Scolytus mediterraneus . Journal of Agricultural and Food Chemistry 22, 376379.Google Scholar
McNew, G.L. (1970) The Boyce Thompson institute program in forest entomology that led to the discovery of pheromones in bark beetles. Contributions from Boyce Thompson Institute 24, 251262.Google Scholar
Mendel, Z., Boneh, O. & Riov, J. (1992) Some foundations for the application of aggregation pheromone to control pine bark beetles in Israel. Journal of Applied Entomology 114, 217227.Google Scholar
Mendel, Z., Ben-Yehuda, S., Marcus, R. & Nestel, D. (1997) Distribution and extent of damage by Scolytus spp. to stone and pome fruit orchards in Israel. Insect Science and Its Application 17, 175181.Google Scholar
Moeck, H.A., Wood, D.L. & Lindahl, K.Q. (1981) Host selection behavior of bark beetles attacking Pinus ponderosa, with special emphasis on the western pine beetle, Dendroctonus brevicomis . Journal of Chemical Ecology 7, 4983.Google Scholar
Reddemann, J. & Schopf, R. (1996) The importance of monoterpenes in the aggregation of the spruce bark beetle Ips typographus (Coleoptera: Scolytidae: Ipinae). Entomologia Generalis 21, 6980.Google Scholar
Renwick, J.A.A. (1970) Chemical aspects of bark beetle aggregation. Contributions from Boyce Thompson Institute 24, 337341.Google Scholar
Rodríguez, E., Campos, M., Raya, A.J.S. & Peña, A. (2003) Effect of the combined treatment of insecticides and an attractant for the control of Phloeotribus scarabaeoides, a pest of Olea europaea . Pest Management Science 59, 339346.Google Scholar
Russo, G. (1931) Contributo alla conoscenza degli Scolytidi II. Lo scolitide del mandorlo: Scolytus amygdali (Guèr.). Note biologiche. Bollettino del Laboratorio di Zoologia Generale e Agraria della Istituto Superiore d'Agricoltura Portici 25, 327349.Google Scholar
Sauvard, D. (2004) General biology of bark beetles. pp. 63–88. in Lieutier, F., Day, K., Battisti, A., Grégoire, J.-C., Evans, H. (Eds) Bark and Wood Boring Insects in Living Trees in Europe: A Synthesis. Dordrecht, The Netherlands, Kluwer Academic Publishers.Google Scholar
Silverstein, R.M. (1970) Attractant pheromones of Coleoptera. pp. 21–40. in Beroza, M. (ed) Chemicals Controlling Insect Behavior. New York, Academic Press Inc., 170 p.Google Scholar
Singer, M.C. & Parmesan, C. (1993) Sources of variations in patterns of plant–insect association. Nature 361, 251253.CrossRefGoogle Scholar
Talbi, Y. (2010) Contribution à l’étude des insectes associés au dépérissement du cèdre de l'Atlas (Cedrus atlantica M.) dans la région de Batna : cas de la Cedraie de Belezma. Algérie, Diplôme de magistère en science agronomique.Google Scholar
Thompson, J.N., Wehling, W. & Podolsky, R. (1990) Evolutionary genetics of host use in swallowtail butterflies. Nature 344, 148150.Google Scholar
Tiberi, R., Faggi, M., Panzavolta, T., Sabbatini Peverieri, G., Marziali, L. & Niccoli, A. (2009) Feeding preference of Tomicus destruens progeny adults on shoots of five pine species. Bulletin of Insectology 62, 261266.Google Scholar
Vité, J.P. & Baadar, E. (1990) Present and future use of semiochemicals in pest management of bark beetles. Journal of Chemical Ecology 16, 30313041.CrossRefGoogle ScholarPubMed
Vite, J.P. & Renwick, J.A.A. (1968) Insect and host factors in the aggregation of the southern pine beetle. Contributions from Boyce Thompson Institute 24, 6163.Google Scholar
White, K.J. (1992) Scolytid pests in fruit tree orchards . Master Thesis. Simon Fraser University. p. 52.Google Scholar
Wood, D.L. (1982) The role of pheromones, Kairomones, and Allomones in the host selection and colonization behavior of bark beetles. Annual Review of Entomology 27, 411446.Google Scholar
Youssef, N.A., Mostafa, F.M., Okil, A.A.M. & Khalil, H.R. (2006) Certain factors affecting infestation of apricot trees with Scolytus amygdali in Fayoum. Annals of Agricultural Science 51, 541550.Google Scholar
U.S. Patent No.: 7.195.788: http://www.google.com.tr/patents/US7195788 (accessed 29 May 2013).Google Scholar
Zeiri, A., Braham, M. & Braham, M. (2011) Laboratory Studies of the Almond Bark Beetle Scolytus amygdali Guerin-Meneville, (Coleoptera: Curculionidae: Scolytinae) collected in the Center Region of Tunisia. International Journal of Entomology 2, 2330.Google Scholar
Zeiri, A., Braham, M. & Braham, M. (2014) The effects of Climatic Variability and Change on the activity of the Almond bark beetle Scolytus amygdali in the coastal zone of Mahdia. Revue des Régions Arides 35, 18331837.Google Scholar
Supplementary material: File

Zeiri supplementary material

Table S1

Download Zeiri supplementary material(File)
File 31.7 KB
Supplementary material: File

Zeiri supplementary material

Fig. S1

Download Zeiri supplementary material(File)
File 2.6 MB
Supplementary material: File

Zeiri supplementary material

Fig. S2

Download Zeiri supplementary material(File)
File 43 KB