Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T05:07:00.607Z Has data issue: false hasContentIssue false

A horizontally polarizing liquid trap enhances the tabanid-capturing efficiency of the classic canopy trap

Published online by Cambridge University Press:  28 June 2013

Á. Egri
Affiliation:
Environmental Optics Laboratory, Department of Biological Physics, Physical Institute, Eötvös University, H-1117 Budapest, Pázmány sétány 1, Hungary
M. Blahó
Affiliation:
Environmental Optics Laboratory, Department of Biological Physics, Physical Institute, Eötvös University, H-1117 Budapest, Pázmány sétány 1, Hungary
D. Száz
Affiliation:
Environmental Optics Laboratory, Department of Biological Physics, Physical Institute, Eötvös University, H-1117 Budapest, Pázmány sétány 1, Hungary
G. Kriska
Affiliation:
Group for Methodology in Biology Teaching, Biological Institute, Eötvös University, H-1117 Budapest, Pázmány sétány 1, Hungary Danube Research Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Alkotmány út 2-4., H-2163 Vácrátót, Hungary
J. Majer
Affiliation:
Department of General and Applied Ecology, Institute of Environment Studies, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary
T. Herczeg
Affiliation:
Environmental Optics Laboratory, Department of Biological Physics, Physical Institute, Eötvös University, H-1117 Budapest, Pázmány sétány 1, Hungary
M. Gyurkovszky
Affiliation:
Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University, H-1078 Budapest, István utca 2, Hungary
R. Farkas
Affiliation:
Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University, H-1078 Budapest, István utca 2, Hungary
G. Horváth*
Affiliation:
Environmental Optics Laboratory, Department of Biological Physics, Physical Institute, Eötvös University, H-1117 Budapest, Pázmány sétány 1, Hungary
*
*Author for correspondence Phone: +0036 30-64-64-371 Fax: +0036 1-372-2757 E-mail: [email protected]

Abstract

Host-seeking female tabanid flies, that need mammalian blood for the development of their eggs, can be captured by the classic canopy trap with an elevated shiny black sphere as a luring visual target. The design of more efficient tabanid traps is important for stock-breeders to control tabanids, since these blood-sucking insects can cause severe problems for livestock, especially for horse- and cattle-keepers: reduced meat/milk production in cattle farms, horses cannot be ridden, decreased quality of hides due to biting scars. We show here that male and female tabanids can be caught by a novel, weather-proof liquid-filled black tray laid on the ground, because the strongly and horizontally polarized light reflected from the black liquid surface attracts water-seeking polarotactic tabanids. We performed field experiments to reveal the ideal elevation of the liquid trap and to compare the tabanid-capturing efficiency of three different traps: (1) the classic canopy trap, (2) the new polarization liquid trap, and (3) the combination of the two traps. In field tests, we showed that the combined trap captures 2.4–8.2 times more tabanids than the canopy trap alone. The reason for the larger efficiency of the combined trap is that it captures simultaneously the host-seeking female and the water-seeking male and female tabanids. We suggest supplementing the traditional canopy trap with the new liquid trap in order to enhance the tabanid-capturing efficiency.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blahó, M., Egri, Á., Barta, A., Antoni, G., Kriska, G. & Horváth, G. (2012 a) How can horseflies be captured by solar panels? A new concept of tabanid traps using light polarization and electricity produced by photovoltaics. Veterinary Parasitology 189, 353365.Google Scholar
Blahó, M., Egri, Á., Báhidszki, L., Kriska, G., Hegedüs, R., Åkesson, S. & Horváth, G. (2012 b) Spottier targets are less attractive to tabanid flies: on the tabanid-repellency of spotty fur patterns. Public Library of Science ONE (PLoS ONE) 7, e41138. doi:10.1371/journal.pone.0041138.Google Scholar
Bracken, G.K., Hanes, W. & Thorsteinson, A.J. (1962) The orientation of horse flies and deer flies (Tabanidae: Diptera). II. The role of some visual factors in the attractiveness of decoy silhouettes. Canadian Journal of Zoology 40, 689695.CrossRefGoogle Scholar
Catts, E.P. (1970) A canopy trap for collecting Tabanidae. Mosquito News 30, 472474.Google Scholar
Egri, Á., Blahó, M., Sándor, A., Kriska, G., Gyurkovszky, M., Farkas, R. & Horváth, G. (2012 a) New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces. Naturwissenschaften 99, 407416.Google Scholar
Egri, Á., Blahó, M., Kriska, G., Farkas, R., Gyurkovszky, M., Åkesson, S. & Horváth, G. (2012 b) Polarotactic tabanids find striped patterns with brightness and/or polarization modulation least attractive: an advantage of zebra stripes. Journal of Experimental Biology 215, 736745.Google Scholar
Egri, Á., Blahó, M., Száz, D., Barta, A., Kriska, G., Antoni, G. & Horváth, G. (2013) A new tabanid trap applying a modified concept of the old flypaper: linearly polarising sticky black surfaces as an effective tool to catch polarotactic horseflies. International Journal for Parasitology 43, 555563.Google Scholar
Foil, L.D. (1989) Tabanids as vectors of disease agents. Parasitology Today 5, 8896.CrossRefGoogle ScholarPubMed
Gressitt, J.C.L. & Gressitt, M.K. (1962) An improved Malaise trap. Pacific Insects 4, 8790.Google Scholar
Harris, J.A., Hillerton, J.E. & Morant, S.V. (1987) Effect on milk production of controlling muscoid flies, and reducing fly-avoidance behaviour by the use of Fenvalerate ear tags during the dry period. Journal of Dairy Research 54, 165171.Google Scholar
Horváth, G. & Kriska, G. (2008) Polarization vision in aquatic insects and ecological traps for polarotactic insects. Chapter 11, pp. 204229in Lancaster, J. & Briers, R.A. (Eds) Aquatic Insects: Challenges to Populations. Oxon, UK, Wallingford, CAB International Publishing.CrossRefGoogle Scholar
Horváth, G. & Varjú, D. (1997) Polarization pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic insects. Journal of Experimental Biology 200, 11551163.Google Scholar
Horváth, G. & Varjú, D. (2004) Polarized Light in Animal Vision – Polarization Patterns in Nature. Heidelberg, Berlin, New York, Springer-Verlag.CrossRefGoogle Scholar
Horváth, G., Majer, J., Horváth, L., Szivák, I. & Kriska, G. (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95, 10931100.Google Scholar
Horváth, G., Blahó, M., Egri, Á., Kriska, G., Seres, I. & Robertson, B. (2010 a) Reducing the maladaptive attractiveness of solar panels to polarotactic insects. Conservation Biology 24, 16441653.Google Scholar
Horváth, G., Blahó, M., Kriska, G., Hegedüs, R., Gerics, B., Farkas, R. & Åkesson, S. (2010 b) An unexpected advantage of whiteness in horses: the most horsefly-proof horse has a depolarizing white coat. Proceedings of the Royal Society B 277, 16431650.Google Scholar
Horváth, G., Móra, A., Bernáth, B. & Kriska, G. (2011) Polarotaxis in non-biting midges: female chironomids are attracted to horizontally polarized light. Physiology and Behavior 104, 10101015.CrossRefGoogle ScholarPubMed
Hribar, L.J., LePrince, D.J. & Foil, L.D. (1992) Ammonia as an attractant for adult Hybomitra lasiophthalma (Diptera: Tabanidae). Journal of Medical Entomology 29, 346348.Google Scholar
Hunter, D.M. & Moorhouse, D.W. (1976) The effects of Austrosimulium pestilens on the milk production of dairy cattle. Austrian Veterinary Journal 52, 9799.Google Scholar
Kriska, G., Bernáth, B., Farkas, R. & Horváth, G. (2009) Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). Journal of Insect Physiology 55, 11671173.Google Scholar
Lehane, M.J. (2005) The Biology of Blood-Sucking in Insects. 2nd edn. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Lerner, A., Meltser, N., Sapir, N., Erlick, C., Shashar, N. & Broza, M. (2008) Reflected polarization guides chironomid females to oviposition sites. Journal of Experimental Biology 211, 35363543.CrossRefGoogle ScholarPubMed
Luger, S.W. (1990) Lyme disease transmitted by a biting fly. New England Journal of Medicine 322, 17521759.Google Scholar
Maat-Bleeker, F. & van Bronswijk, J.E.M.H. (1995) Allergic reactions caused by bites from blood-sucking insects of the Tabanidae family, species Haematopota pluvialis (L.). [abstract]. Allergy 50 (Suppl. 26), 388.Google Scholar
Majer, J. (1987) Tabanids – Tabanidae. pp. 157in Szekessy, V. (ed.) Fauna Hungariae. Budapest, Akadémiai Kiadó. Vol. 14. (in Hungarian).Google Scholar
Mihok, S. (2002) The development of a multipurpose trap (the Nzi) for tsetse and other biting flies. Bulletin of Entomological Research 92, 385403.Google Scholar
Mihok, S. & Lange, K. (2012) Synergism between ammonia and phenols for Hybomitra tabanids in northern and temperate Canada. Medical and Veterinary Entomology 26, 282290.Google Scholar
Mihok, S. & Mulye, H. (2010) Responses of tabanids to Nzi traps baited with octenol, cow urine and phenols in Canada. Medical and Veterinary Entomology 24, 266272.Google ScholarPubMed
Mihok, S., Carlson, D.A., Krafsur, E.S. & Foil, L.D. (2006) Performance of the Nzi and other traps for biting flies in North America. Bulletin of Entomological Research 96, 367397.Google Scholar
Muirhead-Thomson, R.C. (1991) Trap Responses of Flying Insects: The Influence of Trap Design on Capture Efficiency. London, New York, Academic Press, Harcourt Brace Jovanovich Publishers.Google Scholar
Sasaki, H. (2001) Comparison of capturing tabanid flies (Diptera: Tabanidae) by five different color traps in the fields. Applied Entomology and Zoology 36, 515519.CrossRefGoogle Scholar
Thorsteinson, A.J., Bracken, G.K. & Hanec, W. (1965) The orientation behaviour of horseflies and deerflies (Tabanidae: Diptera). III. The use of traps in the study of orientation of tabanids in the field. Entomologia Experimentalis et Applicata 8, 189192.Google Scholar
Umow, N. (1905) Chromatische Depolarisation durch Lichtzerstreuung. Physikalische Zeitschrift 6, 674676.Google Scholar
van Hennekeler, K., Jones, R.E., Skerratt, L.F., Fitzpatrick, L.A., Reid, S.A. & Bellis, G.A. (2008) A comparison of trapping methods for Tabanidae (Diptera) in North Queensland, Australia. Medical and Veterinary Entomology 22, 2631.CrossRefGoogle ScholarPubMed
Veer, V., Parashar, B.D. & Prakash, S. (2002) Tabanid and muscoid haematophagous flies, vectors of trypanosomiasis or surra disease in wild animals and livestock in Nandankanan Biological Park, Bhubaneswar (Orissa, India). Current Science 82, 500503.Google Scholar
Wall, W.J. & Doane, O.W. (1980) Large scale use of box traps to study and control saltmarsh greenhead flies (Diptera: Tabanidae) on Cape Cod, Massachusetts. Environmental Entomology 9, 371375.Google Scholar
Watson, D.W., Denning, S.S., Calibeo-Hayes, D.I., Stringham, S.M. & Mowrey, R.A. (2007) Comparison of two fly traps for the capture of horse flies (Diptera, Tabanidae). Journal of Entomological Science 42, 123132.Google Scholar
Wildermuth, H. (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85, 297302.CrossRefGoogle Scholar
Wildermuth, H. (2007) Polarotaktische Reaktionen von Coenagrion puella und Libellula quadrimaculata auf Erdbeerkulturen als ökologische Falle (Odonata: Coenagrionidae, Libellulidae). Libellula 26, 143150.Google Scholar
Wildermuth, H. & Horváth, G. (2005) Visual deception of a male Libellula depressa by the shiny surface of a parked car (Odonata: Libellulidae). International Journal of Odonatology 8, 97105.Google Scholar
Zar, J.H. (2010) Biostatistical Analysis. New Jersey, USA, Pearson Prentice-Hall.Google Scholar