Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-19T15:11:49.634Z Has data issue: false hasContentIssue false

The ‘Goldilocks Grub’: reproductive responses to leafroller host development in Goniozus jacintae, a parasitoid of the light brown apple moth

Published online by Cambridge University Press:  12 September 2024

Emma Aspin
Affiliation:
School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Adelaide, Australia School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
Michael A. Keller
Affiliation:
School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Adelaide, Australia
Ian C. W. Hardy*
Affiliation:
School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
*
Corresponding author: Ian C. W. Hardy; Email: [email protected]

Abstract

Many parasitoids alter their reproductive behaviour in response to the quality of encountered hosts. They make adaptive decisions concerning whether to parasitise a potential host, the number of eggs laid on an accepted host, and the allocation of sex to their offspring. Here we present evidence that Goniozus jacintae Farrugia (Hymenoptera: Bethylidae), a gregarious ectoparasitoid of larval tortricids, adjusts its reproductive response to the size and developmental stage of larvae of the light brown apple moth (LBAM), Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae). Goniozus jacintae parasitises instars 3–6 of LBAM, but most readily parasitises the later, larger, instars. Brood sizes were bigger on larger hosts and brood sex ratios were female biased (proportion of males = 0.23) with extremely low variance (never >1 male in a brood at emergence), perhaps the most precise of all studied bethylids. Host size did not influence brood development time, which averaged 19.64 days, or the body size of male offspring. However, the size of females was positively correlated with host size and negatively correlated with brood size. The sizes of individual males and females were positively related to the average amount of host resource available to individuals within each brood, suggesting that adult body size is affected by scramble competition among feeding larvae. Average brood sizes were: 3rd instar host, 1.3 (SE ± 0.075); 4th instar, 2.8 (SE ± 0.18); 5th instar, 4.7 (SE ± 0.23); 6th instar, 5.4 (SE ± 0.28). The largest brood size observed was 8 individuals (7 females, 1 male) on the 6th instar of LBAM. These results suggest that later instars would give the highest yield to optimise mass-rearing of G. jacintae if used for augmentative biological pest control.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdi, MK, Lupi, D and Hardy, ICW (2020) Co-foundress confinement elicits kinship effects in a naturally sub-social parasitoid. Journal of Evolutionary Biology 33, 10681085.CrossRefGoogle Scholar
Aitkin, M, Anderson, D, Francis, B and Hinde, J (1989) Statistical Modelling in GLIM. Oxford: Oxford University Press.Google Scholar
Amante, M, Schöller, M, Suma, P and Russo, A (2017) Bethylids attacking stored-product pests: an overview. Entomologia Experimentalis et Applicata 163, 251264.CrossRefGoogle Scholar
Aspin, E, Keller, MA, Yazdani, M and Hardy, ICW (2021) Walk this way, fly that way: Goniozus jacintae attunes flight and foraging behaviour to leafroller host instar. Entomologia Experimentalis et Applicata 169, 350361.CrossRefGoogle Scholar
Ayala, A, Pérez-Lachaud, G, Toledo, J, Liedo, P and Montoya, P (2018) Host acceptance by three native braconid parasitoid species attacking larvae of the Mexican fruit fly, Anastrepha ludens (Diptera, Tephritidae). Journal of Hymenoptera Research 63, 33.CrossRefGoogle Scholar
Baker, PS (1999) The coffee berry borer in Colombia. Final report of the DFID-Cenicafé-CABI Bioscience IPM for coffee project. Chinchiná (Colombia), DFID-Cenicafé, 154.Google Scholar
Batchelor, TP, Hardy, ICW and Barrera, JF (2006) Interactions among bethylid parasitoid species attacking the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Biological Control 36, 106118.CrossRefGoogle Scholar
Bernstein, C, Heizmann, A and Desouhant, E (2002) Intraspecific competition between healthy and parasitised hosts in a host–parasitoid system: consequences for life-history traits. Ecological Entomology 27, 415423.CrossRefGoogle Scholar
Bezemer, TM and Mills, NJ (2003) Clutch size decisions of a gregarious parasitoid under laboratory and field conditions. Animal Behaviour 66, 11191128.CrossRefGoogle Scholar
Bolker, BM, Brooks, ME, Clark, CJ, Geange, SW, Poulsen, JR, Stevens, MHH and White, J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24, 127135.CrossRefGoogle ScholarPubMed
Boulton, RA, Collins, LA and Shuker, DM (2015) Beyond sex allocation: the role of mating systems in sexual selection in parasitoid wasps. Biological Reviews 90, 599627.CrossRefGoogle ScholarPubMed
Brodeur, J and Boivin, G (2004) Functional ecology of immature parasitoids. Annual Review of Entomology 49, 2729.CrossRefGoogle ScholarPubMed
Charnov, EL (1982) The Theory of Sex Allocation. Princeton: Princeton University Press.Google ScholarPubMed
Charnov, EL and Skinner, SW (1984) Evolution of host selection and clutch size in parasitoid wasps. Florida Entomologist 67, 521.CrossRefGoogle Scholar
Cusumano, A, Peri, E and Colazza, S (2016) Interspecific competition/facilitation among insect parasitoids. Current Opinion in Insect Science 14, 1216.CrossRefGoogle ScholarPubMed
Danthanarayana, W (1980) Parasitism of the light brown apple moth, Epiphyas postvittana (Walker), by its larval ectoparasite, Goniozus jacintae Farrugia (Hymenoptera: Bethylidae), in natural populations in Victoria. Australian Journal of Zoology 28, 685692.CrossRefGoogle Scholar
Dobson, AJ (1983) An Introduction to Statistical Modelling. London: Chapman & Hall.CrossRefGoogle Scholar
Ellers, J, van Alphen, JJM and Sevenster, JG (1998) A field study of size–fitness relationships in the parasitoid Asobara tabida. Journal of Animal Ecology 67, 318324.CrossRefGoogle Scholar
Evans, HE (1978) The Bethylidae of America North of Mexico. Memoirs of the American Entomological Institute 27, 1332.Google Scholar
Farahani, HK, Ashouri, A, Zibaee, A, Abroon, P and Alford, L (2016) The effect of host nutritional quality on multiple components of Trichogramma brassicae fitness. Bulletin of Entomological Research 106, 633641.CrossRefGoogle Scholar
Fellowes, MDE, van Alphen, JJM, Shameer, KS, Hardy, ICW, Wajnberg, E and Jervis, MA (2023) Foraging behaviour. In Hardy, ICW and Wajnberg, E (eds), Jervis's Insects as Natural Enemies: Practical Perspectives. Dordrecht: Springer, pp. 1104.Google Scholar
Fox, CW and Messina, FJ (2018) Evolution of larval competitiveness and associated life-history traits in response to host shifts in a seed beetle. Journal of Evolutionary Biology 31, 302313.CrossRefGoogle Scholar
Godfray, HCJ (1987) The evolution of clutch size in parasitic wasps. The American Naturalist 129, 221233.CrossRefGoogle Scholar
Godfray, HCJ (1994) Parasitoids: Behavioral and Evolutionary Ecology. Princeton: Princeton University Press.CrossRefGoogle Scholar
Godfray, HCJ, Partridge, L and Harvey, PH (1991) Clutch size. Annual Review of Ecology and Systematics 22, 409429.CrossRefGoogle Scholar
Gordh, G and Móczár, L (1990) A catalog of the world Bethylidae (Hymenoptera: Aculeata). Memoirs of the American Entomological Institute 46, 1364.Google Scholar
Gordh, G, Woolley, JB and Medved, RA (1983) Biological studies on Goniozus legneri Gordh (Hymenoptera: Bethylidae) a primary external parasite of the navel orangeworm Amyelois transitella and pink bollworm Pectinophora gossypiella (Lepidoptera: Pyralidae, Gelechiidae). Contributions of the American Entomological Institute 20, 433453.Google Scholar
Goubault, ME, Fourrier, J, Krespi, L, Poinsot, D and Cortesero, AM (2004) Selection strategies of parasitized hosts in a generalist parasitoid depend on patch quality but also on host size. Journal of Insect Behavior 17, 99113.CrossRefGoogle Scholar
Goubault, M, Scott, D and Hardy, ICW (2007) The importance of offspring value: maternal defence in parasitoid contests. Animal Behaviour 74, 437446.CrossRefGoogle Scholar
Green, RF, Gordh, G and Hawkins, BA (1982) Precise sex ratios in highly inbred parasitic wasps. The American Naturalist 120, 653665.CrossRefGoogle Scholar
Griffiths, NT and Godfray, HCJ (1988) Local mate competition, sex ratio and clutch size in bethylid wasps. Behavioural Ecology and Sociobiology 22, 211217.CrossRefGoogle Scholar
Guo, X, Wang, Y, Meng, L, Hardy, ICW and Li, B (2022) Reproductive skew in quasi-social parasitoids: how egalitarian is cooperative brooding? Animal Behaviour 186, 191206.CrossRefGoogle Scholar
Guo, X, Zhou, B, Zhao, R, Meng, L, Hardy, ICW and Li, B (2023) Agonistic responses to potential co-foundresses in a cooperatively brooding quasi-social parasitoid. Ecological Entomology 48, 1118.CrossRefGoogle Scholar
Hajek, AE and Eilenberg, J (2018) Natural Enemies: An Introduction to Biological Control. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hardy, ICW (1992) Non-binomial sex allocation and brood sex ratio variances in the parasitoid Hymenoptera. Oikos 65, 143158.CrossRefGoogle Scholar
Hardy, ICW and Cook, JM (1995) Brood sex ratio variance, developmental mortality and virginity in a gregarious parasitoid wasp. Oecologia 103, 162169.CrossRefGoogle Scholar
Hardy, ICW and Mayhew, PJ (1998) Sex ratio, sexual dimorphism and mating structure in bethylid wasps. Behavioral Ecology and Sociobiology 42, 383395.CrossRefGoogle Scholar
Hardy, ICW and Smith, DR (2023) Statistical approaches. In Hardy, ICW and Wajnberg, E (eds), Jervis's Insects as Natural Enemies: Practical Perspectives. Dordrecht: Springer, pp. 705742.CrossRefGoogle Scholar
Hardy, ICW, Griffiths, NT and Godfray, HCJ (1992) Clutch size in a parasitoid wasp: a manipulation experiment. Journal of Animal Ecology 61, 121129.CrossRefGoogle Scholar
Hardy, ICW, Dijkstra, LJ, Gillis, JEM and Luft, PA (1998) Patterns of sex ratio, virginity and developmental mortality in gregarious parasitoids. Biological Journal of the Linnean Society 64, 239270.CrossRefGoogle Scholar
Hardy, ICW, Stokkebo, S, Bønløkke-Pedersen, J and Sejr, MK (2000) Insemination capacity and dispersal in relation to sex allocation decisions in Goniozus legneri (Hymenoptera: Bethylidae): why are there more males in larger broods? Ethology 106, 10211032.CrossRefGoogle Scholar
Hardy, ICW, Goubault, M and Batchelor, TP (2013) Hymenopteran contests and agonistic behaviour. In Hardy, ICW & Briffa, M (eds), Animal Contests. Cambridge: Cambridge University Press, pp. 147177.CrossRefGoogle Scholar
Harvey, JA, Harvey, IF and Thompson, DJ (2001) Lifetime reproductive success in the solitary endoparasitoid, Venturia canescens. Journal of Insect Behavior 14, 573593.CrossRefGoogle Scholar
Hassell, M (2000) The Spatial and Temporal Dynamics of Host-Parasitoid Interactions. Oxford: Oxford University Press.CrossRefGoogle Scholar
Hopper, JV and Mills, NJ (2015) Consequences of infanticide for a gregarious ectoparasitoid of leafroller larvae. Ecological Entomology 40, 461470.CrossRefGoogle Scholar
Jervis, MA, Copland, MJW, Shameer, KS and Harvey, JA (2023) The life-cycle. In Hardy, ICW and Wajnberg, E (eds), Jervis's Insects as Natural Enemies: Practical Perspectives. Dordrecht: Springer, pp. 105252.CrossRefGoogle Scholar
Kapranas, A, Hardy, ICW, Morse, JG and Luck, RF (2011) Parasitoid developmental mortality in the field: patterns, causes and consequences for sex ratio and virginity. Journal of Animal Ecology 80, 192203.CrossRefGoogle ScholarPubMed
Kazmer, DJ and Luck, RF (1995) Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology 76, 412425.CrossRefGoogle Scholar
Khidr, SK, Mayes, S and Hardy, ICW (2013) Primary and secondary sex ratios in a gregarious parasitoid with local mate competition. Behavioral Ecology 24, 435443.CrossRefGoogle Scholar
Krackow, S, Meelis, E and Hardy, ICW (2002) Analysis of sex ratio variances and sequences of sex allocation. In Hardy, ICW (ed), Sex Ratios: Concepts and Research Methods. Cambridge: Cambridge University Press, pp. 112131.CrossRefGoogle Scholar
Legner, EF and Gordh, G (1992) Lower navel orange worm (Lepidoptera: Phycitidae) population densities following establishment of Goniozus legneri (Hymenoptera: Bethylidae) in California. Journal of Economic Entomology 85, 21532160.CrossRefGoogle Scholar
Li, X, Li, B and Meng, L (2019) Oviposition strategy for superparasitism in the gregarious parasitoid Oomyzus sokolowskii (Hymenoptera: Eulophidae). Bulletin of Entomological Research 109, 221228.CrossRefGoogle ScholarPubMed
Luft, PA (1993) Experience affects oviposition in Goniozus nigrifemur (Hymenoptera: Bethylidae). Annals of the Entomological Society of America 86, 497505.CrossRefGoogle Scholar
Mackauer, M, Sequeira, R and Otto, M (1997) Growth and development in parasitoid wasps: adaptation to variable host resources. In Dettner, K, Bauer, G and Völkl, W (eds), Vertical Food Web Interactions: Evolutionary Patterns and Driving Forces. Berlin, Heidelberg: Springer, pp. 191203.CrossRefGoogle Scholar
Malabusini, S, Hardy, ICW, Jucker, C, Savoldelli, S and Lupi, D (2022) How many cooperators are too many? Foundress number, reproduction and sex ratio in a quasi-social parasitoid. Ecological Entomology 47, 566579.CrossRefGoogle Scholar
Mayhew, PJ (2016) Comparing parasitoid life histories. Entomologia Experimentalis et Applicata 159, 147162.CrossRefGoogle Scholar
Mayhew, PJ and Hardy, ICW (1998) Nonsiblicidal behavior and the evolution of clutch size in bethylid wasps. The American Naturalist 151, 409424.CrossRefGoogle ScholarPubMed
McCullagh, P and Nelder, JA (1983) Generalized Linear Models. London: Chapman & Hall.CrossRefGoogle Scholar
Nagelkerke, CJ and Hardy, ICW (1994) The influence of developmental mortality on optimal sex allocation under local mate competition. Behavioral Ecology 5, 401411.CrossRefGoogle Scholar
Ode, PJ and Hardy, ICW (2008) Parasitoid sex ratios and biological control. In Wajnberg, E, Bernstein, C and van Alphen, JJM (eds), Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications. Oxford: Blackwell Publishing, pp. 253291.CrossRefGoogle Scholar
Paull, C and Austin, AD (2006) The hymenopteran parasitoids of light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae) in Australia. Australian Journal of Entomology 45, 142156.CrossRefGoogle Scholar
Pekas, A, Tena, A, Harvey, JA, Garcia-Marí, F and Frago, E (2016) Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology 97, 13451356.CrossRefGoogle ScholarPubMed
Pereira, KS, Guedes, NMP, Serrão, JE, Zanuncio, JC and Guedes, RNC (2017) Superparasitism, immune response and optimum progeny yield in the gregarious parasitoid Palmistichus elaeisis. Pest Management Science 73, 11011109.CrossRefGoogle Scholar
Pérez-Lachaud, G, Batchelor, TP and Hardy, ICW (2004) Wasp eat wasp: facultative hyperparasitism and intra-guild predation by bethylid wasps. Biological Control 30, 149155.CrossRefGoogle Scholar
Petersen, G and Hardy, ICW (1996) The importance of being larger: parasitoid intruder–owner contests and their implications for clutch size. Animal Behaviour 51, 13631373.CrossRefGoogle Scholar
Polaszek, A, Almandhari, T, Fusu, L, Al-Khatri, SAH, Al Naabi, S, Al Shidi, RH, Russell, S and Hardy, ICW (2019) Goniozus omanensis (Hymenoptera: Bethylidae) an important parasitoid of the lesser date moth Batrachedra amydraula Meyrick (Lepidoptera: Batrachedridae) in Oman. PLoS ONE 14, e0223761.CrossRefGoogle Scholar
Quicke, DLJ (1997) Parasitic Wasps. London: Chapman & Hall Ltd.Google Scholar
Rehman, A and Powell, W (2010) Host selection behaviour of aphid parasitoids (Aphidiidae: Hymenoptera). Journal of Plant Breeding and Crop Science 2, 299311.Google Scholar
Sagarra, LA, Vincent, C and Stewart, RK (2001) Body size as an indicator of parasitoid quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bulletin of Entomological Research 91, 363367.CrossRefGoogle ScholarPubMed
Salt, G (1961) Competition among insect parasitoids: mechanisms in biological competition. Symposium of the Society for Experimental Biology 15, 96119.Google Scholar
Samková, A, Hadrava, J, Skuhrovec, J and Janšta, P (2019) Reproductive strategy as a major factor determining female body size and fertility of a gregarious parasitoid. Journal of Applied Entomology 143, 441450.CrossRefGoogle Scholar
Sarfraz, RM, Dosdall, LM and Keddie, BA (2012) Influence of the herbivore host's wild food plants on parasitism, survival and development of the parasitoid Diadegma insulare. Biological Control 62, 3844.CrossRefGoogle Scholar
Scholefield, P and Morison, J (2010) Assessment of economic cost of endemic pests and diseases on the Australian grape and wine industry. Grape and Wine Research and Development Corporation (GWRDC) project. Project number: GWR, 8.Google Scholar
Shameer, KS, Nasser, M, Mohan, C and Hardy, ICW (2018) Direct and indirect influences of intercrops on the coconut defoliator Opisina arenosella. Journal of Pest Science 91, 259275.CrossRefGoogle ScholarPubMed
Suckling, DM and Brockerhoff, EG (2010) Invasion biology, ecology, and management of the light brown apple moth (Tortricidae). Annual Review of Entomology 55, 285306.CrossRefGoogle ScholarPubMed
Tang, X, Meng, L, Kapranas, A, Xu, F, Hardy, ICW and Li, B (2014) Mutually beneficial host exploitation and ultra-biased sex ratios in quasisocial parasitoids. Nature Communications 5, 17.CrossRefGoogle ScholarPubMed
Teder, T, Kaasik, A, Taits, K and Tammaru, T (2021) Why do males emerge before females? Sexual size dimorphism drives sexual bimaturism in insects. Biological Reviews 96, 24612475.CrossRefGoogle ScholarPubMed
Visser, ME (1994) The importance of being large: the relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae). Journal of Animal Ecology 63, 963978.CrossRefGoogle Scholar
Visser, ME (1996) The influence of competition between foragers on clutch size decisions in an insect parasitoid with scramble larval competition. Behavioral Ecology 7, 109114.CrossRefGoogle Scholar
Visser, ME, van Alphen, JJM and Nell, HW (1990) Adaptive superparasitism and patch time allocation in solitary parasitoids: the influence of the number of parasitoids depleting a patch. Behaviour 114, 2136.CrossRefGoogle Scholar
Waage, J (1986) Family planning in parasitoids: adaptive patterns of progeny and sex allocation. Insect parasitoids: 13th symposium of the Royal Entomological Society of London, 18–19 September 1985 at the Department of Physics Lecture Theatre, Imperial College, London, 1985 (Waage, J. & Greathead, D. eds). London: Academic Press.Google Scholar
Wang, Y, Xiang, M, Hou, Y-Y, Yang, X, Dai, H, Li, J and Zang, L-S (2019) Impact of egg deposition period on the timing of adult emergence in Trichogramma parasitoids. Entomologia Generalis 39, 339346.CrossRefGoogle Scholar
Wang, X, Hogg, BN, Biondi, A and Daane, KM (2021) Plasticity of body growth and development in two cosmopolitan pupal parasitoids. Biological Control 163, 104738.CrossRefGoogle Scholar
West, SA (2009) Sex Allocation. Princeton: Princeton University Press.CrossRefGoogle Scholar
West, SA and Herre, EA (1998) Stabilizing selection and variance in fig wasp sex ratios. Evolution 52, 475485.CrossRefGoogle ScholarPubMed
Whitehorn, PR, Cook, N, Blackburn, CV, Gill, SM, Green, J and Shuker, DM (2015) Sex allocation theory reveals a hidden cost of neonicotinoid exposure in a parasitoid wasp. Proceedings of the Royal Society B: Biological Sciences 282, 20150389.CrossRefGoogle Scholar
Yazdani, M, Glatz, R and Keller, MA (2014) Host discrimination by the solitary endoparasitoid Dolichogenidea tasmanica (Hymenopotera: Braconidae). Biocontrol Science and Technology 25, 155162.CrossRefGoogle Scholar
Yazdani, M, Feng, Y, Glatz, R and Keller, MA (2015) Host stage preference of Dolichogenidea tasmanica (Cameron, 1912) (Hymenoptera: Braconidae), a parasitoid of Epiphyas postvittana (Walker, 1863) (Lepidoptera: Tortricidae). Austral Entomology 54, 325331.CrossRefGoogle Scholar
Zhang, LG, Song, SH and Fan, JX (1984) Multiplication of Scleroderma guani by male pupae of honeybee. Natural Enemies of Insects (Kunchong Tiandi) 6, 244247.Google Scholar
Zhang, Y, Yu, F, Wu, L-H, Dai, R-H, Yang, H, Zhang, X-M and Hu, D-M (2022) Life history traits of the parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae) on three beetle hosts. Journal of Stored Products Research 97, 101973.CrossRefGoogle Scholar