Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T12:05:20.704Z Has data issue: false hasContentIssue false

Global distribution and sustainable management of Asian corn borer (ACB), Ostrinia furnacalis (Lepidoptera: Crambidae): recent advancement and future prospects

Published online by Cambridge University Press:  21 January 2025

Arzlan Abbas
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
Babu Saddam
Affiliation:
College of Plant Protection, Northwest A&F University, Yangling, P.R. China
Farman Ullah
Affiliation:
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
Muhammad Asghar Hassan
Affiliation:
Institute of Entomology, Guizhou University, Guiyang, P.R. China The Provincial Special Key Laboratory for Development and Utilization of Insect Resources, Guizhou University; Guiyang, P.R. China
Komal Shoukat
Affiliation:
Department of Chemistry, Government College University, Faisalabad, Punjab, Pakistan
Faisal Hafeez
Affiliation:
Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
Aleena Alam
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
Sohail Abbas
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
Hamed A. Ghramh
Affiliation:
Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia Center of Bee Research and its Products (CBRP), and Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
Khalid Ali Khan
Affiliation:
Center of Bee Research and its Products (CBRP), and Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia Applied College, King Khalid University, Abha, Saudi Arabia
Rashid Iqbal
Affiliation:
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
Muhammad Zulqar Nain Dara
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
Jamin Ali
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
Chen Ri Zhao*
Affiliation:
College of Plant Protection, Jilin Agricultural University, Changchun, P.R. China
*
Corresponding author: Chen Rizhao; Email: [email protected]

Abstract

The Asian corn borer (ACB), Ostrinia furnacalis (Guenée, 1854), is a serious pest of several crops, particularly a destructive pest of maize and other cereals throughout most of Asia, including China, the Philippines, Indonesia, Malaysia, Thailand, Sri Lanka, India, Bangladesh, Japan, Korea, Vietnam, Laos, Myanmar, Afghanistan, Pakistan and Cambodia. It has long been known as a pest in South-east Asia and has invaded other parts of Asia, Solomon Islands, parts of Africa and certain regions of Australia and Russia. Consequently, worldwide efforts have been increased to ensure new control strategies for O. furnacalis management. In this article, we provide a comprehensive review of the ACB covering its (i) distribution (geographic range and seasonal variations), (ii) morphology and ecology (taxonomy, life-history, host plants and economic importance) and (iii) management strategies (which include agroecological approaches, mating disruption, integrated genetic approaches, chemical as well as biological control). Furthermore, we conclude this review with recommendations to provide some suggestions for improving eco-friendly pest management strategies to enhance the sustainable management of ACB in infested areas.

Type
Review Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, A, Ullah, F, Hafeez, M, Han, X, Dara, MZN, Gul, H and Zhao, CR (2022) Biological control of fall armyworm, Spodoptera frugiperda. Agronomy 12, 2704. https://doi.org/10.3390/agronomy12112704CrossRefGoogle Scholar
Abbas, A, Zhao, CR, Arshad, M, Han, X, Iftikhar, A, Hafeez, F, Aslam, A and Ullah, F (2023) Sublethal effects of spinetoram and emamectin benzoate on key demographic parameters of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) under laboratory conditions. Environmental Science and Pollution Research 30, 8299083003. https://doi.org/10.1007/s11356-023-28183-8CrossRefGoogle ScholarPubMed
Abbas, S, Alam, A, Abbas, M, Abbas, A, Ali, J, Schilthuizen, M, Romano, D and Zhao, CR (2024) Lateralised courtship behaviour and its impact on mating success in Ostrinia furnacalis (Lepidoptera: Crambidae). Bulletin of Entomological Research 114, 374382. https://doi.org/10.1017/s0007485324000178CrossRefGoogle ScholarPubMed
Afidchao, MM, Musters, C and de Snoo, GR (2013) Asian corn borer (ACB) and non-ACB pests in GM corn (Zea mays L.) in the Philippines. Pest Management Science 69, 792801. https://doi.org/10.1002/ps.3471CrossRefGoogle Scholar
Alam, A, Abbas, S, Abbas, A, Abbas, M, Hafeez, F, Shakeel, M, Xiao, F and Zhao, CR (2023) Emerging trends in insect sex pheromones and traps for sustainable management of key agricultural pests in Asia: beyond insecticides – a comprehensive review. International Journal of Tropical Insect Science 43, 18671882. https://doi.org/10.1007/s42690-023-01100-9CrossRefGoogle Scholar
Alam, A, Abbas, S, Ali, J, Liangzhu, W, Shakeel, M, Ullah, F, Feng, X, Weibo, Q, Haichao, W, Jiali, L, Abbas, A, Khan, KA, Ghramh, HA, Zhiming, X and Zhao, CR (2024) Diet suitability through biological parameters in Ostrinia furnacalis (Lepidoptera: Crambidae) clades. Entomological Research 54, e12751. https://doi.org/10.1111/1748-5967.12751CrossRefGoogle Scholar
Altieri, MA, Francis, CA, Van Schoonhoven, A and Doll, JD (1978) A review of insect prevalence in maize (Zea mays L.) and bean (Phaseolus vulgaris L.) polycultural systems. Field Crops Research 1, 3349. https://doi.org/10.1016/0378-4290(78)90005-9CrossRefGoogle Scholar
Altieri, MA, Ponti, L and Nicholls, CI (2012) Soil fertility, biodiversity and pest management. Biodiversity Insect Pests: Key Issues for Sustainable Management, 7284. https://doi.org/10.1002/9781118231838CrossRefGoogle Scholar
Atwal, AS (1976) Agricultural Pests of India and South-East Asia, 2nd Edn. New Delhi, India: Kalyani.Google Scholar
Batool, R, Umer, MJ, Wang, Y, He, K, Zhang, T, Bai, S, Zhi, Y, Chen, J and Wang, Z (2020) Synergistic effect of Beauveria bassiana and Trichoderma asperellum to induce maize (Zea mays L.) defense against the Asian corn borer, Ostrinia furnacalis (Lepidoptera, Crambidae) and larval immune response. International Journal of Molecular Sciences 21, 8215. https://doi.org/10.3390/ijms21218215CrossRefGoogle ScholarPubMed
Bi, H, Merchant, A, Gu, J, Li, X, Zhou, X and Zhang, Q (2022) CRISPR/Cas9-mediated mutagenesis of abdominal-A and ultrabithorax in the Asian corn borer, Ostrinia furnacalis. Insects 13, 384. https://doi.org/10.3390/insects13040384CrossRefGoogle ScholarPubMed
Bing, LA and Lewis, LC (1993) Occurrence of the entomopathogen Beauveria bassiana (Balsamo) Vuillemin in different tillage regimes and in Zea mays L. and virulence towards Ostrinia nubilalis (Hübner). Agriculture, Ecosystems and Environment 45, 147156. https://doi.org/10.1016/0167-8809(93)90065-WCrossRefGoogle Scholar
Boo, K and Park, J (1998) Sex pheromone composition of the Asian corn borer moth, Ostrinia furnacalis (Guenée) (Lepidoptera: Pyralidae) in South Korea. Journal of Asia-Pacific Entomology 1, 7784. https://doi.org/10.1016/S1226-8615(08)60008-4CrossRefGoogle Scholar
Camarao, GC and Morallo-Rejesus, B (2003) Parasitoids of the Asian corn borer, Ostrinia furnacalis (Guenee), and their biological attributes. Philippine Agricultural Scientist, 17–26.Google Scholar
Chang, X, Wang, W, Shen, Z and Ye, G (2013) Evaluation of transgenic cry1Ab/cry2Aj maize for its resistance to Ostrinia furnacalis. Acta Phytophylacica Sinica 40, 339344. http://www.wanfangdata.com.cnGoogle Scholar
Chau, NN, Anh, LT, Vu, NH and Phuc, HK (2022) The reproduction potentials of four entomopathogenic nematode strains related to cost-effective production for biological control. Journal of Asia-Pacific Entomology 25, 101880. https://doi.org/10.1016/j.aspen.2022.101880CrossRefGoogle Scholar
Chen, RZ, Klein, MG, Sheng, CF, Li, Y, Shao, DX and Li, QY (2013) Use of pheromone timed insecticide applications integrated with mating disruption or mass trapping against Ostrinia furnacalis (Lepidoptera: Pyralidae) in sweet corn. Environmental Entomology 42, 13901399. https://doi.org/10.1603/EN13143CrossRefGoogle ScholarPubMed
Chen, RZ, Klein, MG, Li, QY, Li, LB, Li, PP and Sheng, CF (2015) Do second generation Asian corn borer (Lepidoptera: Crambidae) immigrate to corn fields from alternate habitats? Journal of Asia-Pacific Entomology 18, 687693. https://doi.org/10.1016/j.aspen.2015.07.018CrossRefGoogle Scholar
Chen, Y, Wang, W, Wu, C, Chang, C, Xie, G and Hung, C (2016) Evaluation of the Asian corn borer (Ostrinia furnacalis) control by mass trapping with sex pheromone in corn fields. Crop, Environment and Bioinformatics 13, 97104.Google Scholar
Cherry, A, Lomer, C, Djegui, D and Schulthess, F (1999) Pathogen incidence and their potential as microbial control agents in IPM of maize stem borers in West Africa. BioControl 44, 301327. https://doi.org/10.1023/A:1009991724251CrossRefGoogle Scholar
Chithambarathanu, M and Jeyakumar, M (2023) Survey on crop pest detection using deep learning and machine learning approaches. Multimedia Tools Applications 82, 4227742310. https://doi.org/10.1007/s11042-023-15221-3CrossRefGoogle Scholar
Clark, MS (1993) Generalist Predators in Reduced-Tillage Corn: Predation on Armyworm, Habitat Preferences, and a Method to Estimate Absolute Densities. Blacksburg, USA: DS Virginia Tech.Google Scholar
Cutler, GC, Amichot, M, Benelli, G, Guedes, RNC, Qu, Y, Rix, RR, Ullah, F and Desneux, N (2022) Hormesis and insects: effects and interactions in agroecosystems. Science of the Total Environment 825, 153899. https://doi.org/10.1016/j.scitotenv.2022.153899CrossRefGoogle ScholarPubMed
Da-Lopez, YF, Trisyono, YA, Witjaksono, W and Subiadi, S (2014) Pola sebaran kelompok telur Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) pada lahan jagung. Journal Entomologi Indonesia 11, 8181. https://doi.org/10.5994/jei.11.2.81–92CrossRefGoogle Scholar
Dar, SA, Mahdi, SS, Al Galil, FMA, Mir, SH, Jan, R and Sultan, RMS (2022) Role of botanicals in integrated pest management for sustained crop production. In Bahar, FA, Anwar, BM and Mahdi, SS (eds), Secondary Agriculture. Cham: Springer, 147168. https://doi.org/10.1007/978-3-031-09218-3_12CrossRefGoogle Scholar
Deng, JY, Chen-yi-hang, L, Zhou, JX, Yao, YB, Yin, XH, Fu, KY, Ding, XH, Guo, WC, Wen, L and Na, W (2023) Analysis of sex pheromone production and field trapping of the Asian corn borer (Ostrinia furnacalis Guenée) in Xinjiang, China. Journal of Integrative Agriculture 22, 10931103. https://doi.org/10.1016/j.jia.2022.08.042CrossRefGoogle Scholar
Desneux, N, Decourtye, A and Delpuech, JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52, 81106. https://doi.org/10.1146/annurev.ento.52.110405.091440CrossRefGoogle ScholarPubMed
Díaz-Siefer, P, Olmos-Moya, N, Fontúrbel, FE, Blas, L, Rocío, AP and Juan, LC (2022) Bird-mediated effects of pest control services on crop productivity: a global synthesis. Journal of Pest Science 95, 567576. https://doi.org/10.1007/s10340-021-01438-4CrossRefGoogle Scholar
Dong, Q, Sun, L, Han, T, Cai, M and Gao, C (2024) Pestlite: a novel YOLO-based deep learning technique for crop pest detection. Agriculture 14, 228. https://doi.org/10.3390/agriculture14020228CrossRefGoogle Scholar
Duraimurugan, P, Bharathi, E, Dharavath, NR and Selvam, H (2024) Pathogenicity of native strains of Bacillus thuringiensis, Beauveria bassiana and Metarhizium rileyi as entomopathogens against the polyphagous borer, Conogethes punctiferalis (Guenée) (Crambidae: Lepidoptera). Egyptian Journal of Biological Pest Control 34, 50. https://doi.org/10.1186/s41938-024-00808-1CrossRefGoogle Scholar
Fan, YH, Song, HF, Abbas, M, Wang, YL, Li, T, Ma, EB, Anastasia, MWC, Kristopher, S, Kun, YZ and Zhang, JZ (2021) A dsRNA-degrading nuclease (dsRNase2) limits RNAi efficiency in the Asian corn borer (Ostrinia furnacalis). Insect Science 28, 16771689. https://doi.org/10.1111/1744-7917.12882CrossRefGoogle ScholarPubMed
Fan, Y, Song, H, Abbas, M, Wang, Y, Liu, X, Li, T, Enbo, M, Kun, YZ and Jianzhen, Z (2022 a) The stability and sequence cleavage preference of dsRNA are key factors differentiating RNAi efficiency between migratory locust and Asian corn borer. Insect Biochemistry and Molecular Biology 143, 103738. https://doi.org/10.1016/j.ibmb.2022.103738CrossRefGoogle ScholarPubMed
Fan, Y, Abbas, M, Liu, X, Wang, Y, Song, H, Li, T, Ma, E, Zhu, KY and Zhang, J (2022 b) Increased RNAi efficiency by ds EGFP-induced up-regulation of two core RNAi pathway genes (OfDicer2 and OfAgo2) in the Asian corn borer (Ostrinia furnacalis). Insects 13, 274. https://doi.org/10.3390/insects13030274CrossRefGoogle Scholar
Fang, G, Zhang, Q, Cao, Y, Wang, Y, Qi, M, Wu, N, Qian, L, Zhu, C, Huang, Y and Zhan, S (2021) The draft genome of the Asian corn borer yields insights into ecological adaptation of a devastating maize pest. Insect Biochemistry Molecular Biology 138, 103638. https://doi.org/10.1016/j.ibmb.2021.103638CrossRefGoogle ScholarPubMed
Felkl, G (1988) Economic aspects of detasseling corn plants and insecticide use to control Asian corn borer, Ostrinia furnacalis Guenée (Lep., Pyralidae), in the Philippines. Journal of Applied Entomology 105, 379386. https://doi.org/10.1111/j.1439-0418.1988.tb00200.xCrossRefGoogle Scholar
Ferrelli, ML and Salvador, R (2023) Effects of mixed baculovirus infections in biological control: a comprehensive historical and technical analysis. Viruses 15, 1838. https://doi.org/10.3390/v15091838CrossRefGoogle ScholarPubMed
Franklin, J (2010) Mapping Species Distributions: Spatial Inference and Prediction. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Fu, S, Huang, L, He, H, Tang, J, Wu, S and Xue, F (2022) Differentiation of developmental pathways results in different life-history patterns between the high and low latitudinal populations in the Asian corn borer. Insects 13, 1026. https://doi.org/10.3390/insects13111026CrossRefGoogle ScholarPubMed
Gao, Q, Lin, Y, Wang, X, Jing, D, Wang, Z, He, K, Bai, S, Zhang, Y and Zhang, T (2022) Knockout of ABC transporter ABCG4 gene confers resistance to Cry1 proteins in Ostrinia furnacalis. Toxins 14, 52. https://doi.org/10.3390/toxins14010052CrossRefGoogle ScholarPubMed
Gardner, J, Hoffmann, MP, Pitcher, SA and Harper, JK (2011) Integrating insecticides and Trichogramma ostriniae to control European corn borer in sweet corn: economic analysis. Biological Control 56, 916. https://doi.org/10.1016/j.biocontrol.2010.08.010CrossRefGoogle Scholar
GBIF O (2022) GBIF Occurrence Download. https://doi.org/10.15468/dl.856r37CrossRefGoogle Scholar
Grahame, J (2022) Ostrinia furnacalis (Asian Corn Borer), CABI Compendium. Wallingford, UK: CABI. https://doi.org/10.1079/cabicompendium.38026Google Scholar
Gul, H, Abbas, A, Ullah, F, Desneux, N, Tariq, K, Ali, A and Liu, X (2022) In: Akhtar K, Arif M, Riaz M and Wang H. (eds) Mulching in Agroecosystems. Singapore: Springer, pp. 123133. https://doi.org/10.1007/978-981-19-6410-7_8CrossRefGoogle Scholar
Gul, H, Ihsan ul, H, Ali, G, Arzlan, A, Shanza, K, Aqsa, Y, Farman, U, Nicolas, D and Xiaoxia, L (2024) Unraveling the feeding response and intergenerational sublethal effects of flonicamid on Rhopalosiphum padi. Entomologia Generalis 44, 13311340. https://doi.org/10.1127/entomologia/2024/2523CrossRefGoogle Scholar
Guo, J, He, K, Meng, Y, Hellmich, RL, Chen, S, Lopez, MD, Lauter, N and Wang, Z (2022) Asian corn borer damage is affected by rind penetration strength of corn stalks in a spatiotemporally dependent manner. Plant Direct 6, e381. https://doi.org/10.1002/pld3.381CrossRefGoogle Scholar
Guo, B, Wang, J, Guo, M, Chen, M, Chen, Y and Miao, Y (2024) Overview of pest detection and recognition algorithms. Electronics 13, 3008. https://doi.org/10.3390/electronics13153008CrossRefGoogle Scholar
Han, X, Chen, RZ, Li, LB, Wei, X, Qu, MB, Klein, MG and Wang, KQ (2020) Phylogenetic relationships and biological features reveal that male Ostrinia furnacalis (Lepidoptera: Crambidae) in Northeast China can be categorized into postmedial line-based clades. Zootaxa 4786, 053068. https://doi.org/10.11646/zootaxa.4786.1.4CrossRefGoogle ScholarPubMed
Harari, A and Sharon, R (2022) The contemporary and prospective risks of resistance to the mating disruption method in moths. Entomologia Generalis 42, 275288. https://doi.org/10.1127/entomologia/2021/1275CrossRefGoogle Scholar
He, KL, Zhou, DR and Yang, HW (1991) Biological control of Asian corn borer with entomopathogenic nematode, Steinernema feltiae Agkiotos. Chinese Journal of Biological Control 7, 1.Google Scholar
He, KL, Wen, LP, Wang, ZY, Zhou, DR and Cong, B (2000) Oviposition response of Asian corn borer, Ostrinia furnacalis (Guenee), to certain corn plant volatiles. Acta Entomologica Sinica 43(SUPP), 195200.Google Scholar
He, KL, Wang, ZY, Wen, LP, Bai, SX, Liu, KH and Zhou, DR (2002) Investigation on the parasitoids and pathogens of the Asian corn borer overwintering larvae in corn belt of China. Chinese Journal of Biological Control 18, 49.Google Scholar
He, K, Wang, Z, Zhou, D, Wen, L, Song, Y and Yao, Z (2003) Evaluation of transgenic Bt corn for resistance to the Asian corn borer (Lepidoptera: Pyralidae). Journal of Economic Entomology 96, 935940. https://doi.org/10.1093/jee/96.3.935CrossRefGoogle Scholar
Hernández-Velázquez, VM, Lina-García, LP, Obregón-Barboza, V, Trejo-Loyo, AG and Peña-Chora, G (2012) Pathogens associated with sugarcane borers, Diatraea spp.(Lepidoptera: Crambidae): a review. International Journal of Zoology, 1340. https://doi.org/10.1155/2012/303589Google Scholar
Hoffmann, MP, Ode, PR, Walker, DL, Gardner, J, van Nouhuys, S and Shelton, AM (2001) Performance of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) reared on factitious hosts, including the target host, Ostrinia nubilalis (Lepidoptera: Crambidae). Biological Control 21, 110. https://doi.org/10.1006/bcon.2000.0912CrossRefGoogle Scholar
Holopainen, JK (2004) Multiple functions of inducible plant volatiles. Trends in Plant Science 9, 529533. https://doi.org/10.1016/j.tplants.2004.09.006CrossRefGoogle ScholarPubMed
Hornett, EA, Kageyama, D and Hurst, GD (2022) Sex determination systems as the interface between male-killing bacteria and their hosts. Proceedings of the Royal Society B 289, 20212781. https://doi.org/10.1098/rspb.2021.2781CrossRefGoogle Scholar
Huang, CH, Yan, FM, Byers, JA, Wang, RJ and Xu, CR (2009) Volatiles induced by the larvae of the Asian corn borer (Ostrinia furnacalis) in maize plants affect behavior of conspecific larvae and female adults. Insect Science 16, 311320. https://doi.org/https://doi.org/10.1111/j.1744-7917.2009.01257.xCrossRefGoogle Scholar
Huang, NX, Jaworski, CC, Desneux, N, Zhang, F, Yang, PY and Wang, S (2020) Long-term and large-scale releases of Trichogramma promote pesticide decrease in maize in northeastern China. Entomologia Generalis 40, 331335. https://doi.org/10.1127/entomologia/2020/0994CrossRefGoogle Scholar
Huseth, AS, Groves, RL, Chapman, SA and Nault, BA (2015) Evaluation of diamide insecticides co-applied with other agrochemicals at various times to manage Ostrinia nubilalis in processing snap bean. Pest Management Science 71, 16491656. https://doi.org/https://doi.org/10.1002/ps.3973CrossRefGoogle ScholarPubMed
Ikten, C, Skoda, SR, Hunt, TE, Molina-Ochoa, J and Foster, JE (2011) Genetic variation and inheritance of diapause induction in two distinct voltine ecotypes of Ostrinia nubilalis (Lepidoptera: Crambidae). Annals of the Entomological Society of America 104, 567575. https://doi.org/10.1603/AN09149CrossRefGoogle Scholar
Inglis, G, Lawrence, A and Davis, F (2000) Pathogens associated with southwestern corn borers and southern corn stalk borers (Lepidoptera: Crambidae). Journal of Economic Entomology 93, 16191626. https://doi.org/10.1603/0022-0493-93.6.1619CrossRefGoogle ScholarPubMed
Ishikawa, Y, Takanashi, T, Kim, CG, Hoshizaki, S, Tatsuki, S and Huang, Y (1999) Ostrinia spp. in Japan: their host plants and sex pheromones. In Proceedings of the 10th International Symposium on Insect-Plant Relationships. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-1890-5_30CrossRefGoogle Scholar
Isman, MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51, 4566. https://doi.org/10.1146/annurev.ento.51.110104.151146CrossRefGoogle Scholar
Isman, MB (2020) Botanical insecticides in the twenty-first century – fulfilling their promise? Annual Review of Entomology 65, 233249. https://doi.org/10.1146/annurev-ento-011019-025010CrossRefGoogle ScholarPubMed
Jasrotia, P, Kumari, P, Malik, K, Kashyap, PL, Kumar, S, Bhardwaj, AK and Singh, GP (2023) Conservation agriculture based crop management practices impact diversity and population dynamics of the insect-pests and their natural enemies in agroecosystems. Frontiers in Sustainable Food Systems 7, 1173048. https://doi.org/10.3389/fsufs.2023.1173048CrossRefGoogle Scholar
Jerilyn, JMC, Eric, C, Jennifer, LM, Eliza, H, Ross, M and Haldre, SR (2024) Context influences the role of birds in pest control: the interactive effects of agricultural crop and farm. Pacific Science 77, 429440. https://doi.org/10.2984/77.4.5Google Scholar
Ji, J, Shen, D, Zhang, S, Wang, L and An, C (2022) Serpin-4 facilitates Baculovirus infection by inhibiting melanization in Asian corn borer, Ostrinia furnacalis (Guenée). Frontiers in Immunology 13, 905357. https://doi.org/10.3389/fimmu.2022.905357CrossRefGoogle ScholarPubMed
Jin, R and Zhang, J (1983) A preliminary study on the diapause ratios of different generations of the natural population of Asian corn borer in Beijing. Acta Agriculture University Peking 1, 107108.Google Scholar
Jin, W, Zhai, Y, Yang, Y, Wu, Y and Wang, X (2021) Cadherin protein is involved in the action of Bacillus thuringiensis Cry1Ac toxin in Ostrinia furnacalis. Toxins 13, 658. https://doi.org/10.3390/toxins13090658CrossRefGoogle ScholarPubMed
Jones, GA, Sieving, KE, Avery, ML and Meagher, RL (2005) Parasitized and non-parasitized prey selectivity by an insectivorous bird. Crop Protection 24, 185189. https://doi.org/10.1016/j.cropro.2004.07.002CrossRefGoogle Scholar
Jung, JK, Seo, BY, Jeong, IH, Kim, EY and Lee, SW (2021) Application timings of insecticides to control the first generation of the Asian corn borer, Ostrinia furnacalis in waxy maize fields. Korean Journal of Applied Entomology 60, 431448.Google Scholar
Karina, G, Elissa, MO, Daniel, SK and David, JG (2020) The good, the bad, and the risky: can birds be incorporated as biological control agents into integrated pest management programs? Journal of Integrated Pest Management 11, 11. https://doi.org/10.1093/jipm/pmaa009Google Scholar
Kariyanna, B and Sowjanya, M (2024) Unravelling the use of artificial intelligence in management of insect pests. Smart Agricultural Technology 8, 100517. https://doi.org/10.1016/j.atech.2024.100517CrossRefGoogle Scholar
Kim, CG, Hoshizaki, S, Huang, YP, Tatsuki, S and Ishikawa, Y (1999) Usefulness of mitochondrial COII gene sequences in examining phylogenetic relationships in the Asian corn borer, Ostrinia furnacalis, and allied species (Lepidoptera: Pyralidae). Applied Entomology Zoology 34, 405412. https://doi.org/10.1303/aez.34.405CrossRefGoogle Scholar
Kim, EY, Jung, JK, Kim, IH and Kim, Y (2022) Chymotrypsin is a molecular target of insect resistance of three corn varieties against the Asian corn borer, Ostrinia furnacalis. PLoS ONE 17, e0266751. https://doi.org/10.1371/journal.pone.0266751CrossRefGoogle ScholarPubMed
Kim, J, Jung, S and Kim, YU (2024) Pheromone-based mating disruption of Conogethes punctiferalis (Lepidoptera: Crambidae) in chestnut orchards. Insects 15, 445. https://doi.org/10.3390/insects15060445CrossRefGoogle ScholarPubMed
Kojima, W, Fujii, T, Suwa, M, Miyazawa, M and Ishikawa, Y (2010) Physiological adaptation of the Asian corn borer, Ostrinia furnacalis to chemical defenses of its host plant, maize. Journal of Insect Physiology 56, 13491355. https://doi.org/10.1016/j.jinsphys.2010.04.021CrossRefGoogle ScholarPubMed
Koo, J and Palli, SR (2024) Recent advances in understanding the mechanisms of RNA interference in insects. Insect Molecular Biology, 114. https://doi.org/10.1111/imb.12941Google ScholarPubMed
Kurtti, TJ, Ross, SE, Liu, Y and Munderloh, UG (1994) In vitro developmental biology and spore production in Nosema furnacalis (Microspora: Nosematidae). Journal of Invertebrate Pathology 63, 188196. https://doi.org/10.1006/jipa.1994.1035CrossRefGoogle Scholar
Lance, DR, Leonard, DS, Mastro, VC and Walters, ML (2016) Mating disruption as a suppression tactic in programs targeting regulated lepidopteran pests in US. Journal of Chemical Ecology 42, 590605. https://doi.org/10.1007/s10886-016-0732-9CrossRefGoogle ScholarPubMed
Lastushkina, E, Telichko, O, Syrmolot, O and Belova, T (2023) Using insecticides for the protection of maize plants against the Asian corn borer. In BIO Web of Conferences. EDP Sciences. https://doi.org/10.1051/bioconf/20237101101CrossRefGoogle Scholar
Lewis, L and Johnson, T (1982) Efficacy of two nuclear polyhedrosis viruses against Ostrinia nubilalis [Lepidoptera.: Pyralidae] in the laboratory and field. Entomophaga 27, 3338. https://doi.org/10.1007/BF02371935CrossRefGoogle Scholar
Li, G and Wu, K (2022) Commercial strategy of transgenic insect-resistant maize in China. Plant Protection 49, 1732.Google Scholar
Li, J, Wang, Y, Xie, W and Yang, G (1992) A preliminary study on the ecotype of Ostrinia furnacalis in northern China. Maize Science 1, 6972.Google Scholar
Li, Y, Hallerman, EM, Wu, K and Peng, Y (2020) Insect-resistant genetically engineered crops in China: development, application, and prospects for use. Annual Review of Entomology 65, 273292. https://doi.org/10.1146/annurev-ento-011019-025039CrossRefGoogle Scholar
Li, JJ, Shi, Y, Wu, JN, Li, H, Smagghe, G and Liu, TX (2021) CRISPR/cas9 in lepidopteran insects: progress, application and prospects. Journal of Insect Physiology 135, 104325. https://doi.org/10.1016/j.jinsphys.2021.104325CrossRefGoogle ScholarPubMed
Li, L, Duan, R, Li, R, Zou, Y, Liu, J, Chen, F and Xing, G (2022) Impacts of corn intercropping with soybean, peanut and millet through different planting patterns on population dynamics and community diversity of insects under fertilizer reduction. Frontiers in Plant Science 13, 936039. https://doi.org/10.3389/fpls.2022.936039CrossRefGoogle ScholarPubMed
Li, H, Liu, C, Zhang, H, Wang, X, Tang, Q and Wang, Y (2023 a) Global genetically modified crop industrialization trends in 2022. Journal of Agricultural Science and Technology 25, 616.Google Scholar
Li, Q, Shi, J, Huang, C, Guo, J, He, K and Wang, Z (2023 b) Asian corn borer (Ostrinia furnacalis) infestation increases Fusarium verticillioides infection and fumonisin contamination in maize and reduces the yield. Plant Disease 107, 10571564. https://doi.org/10.1094/PDIS-03-22-0584-REGoogle ScholarPubMed
Li, B, Dopman, EB, Dong, Y and Yang, Z (2024 a) Forecasting habitat suitability and niche shifts of two global maize pests: Ostrinia furnacalis and Ostrinia nubilalis (Lepidoptera: Crambidae). Pest Management Science 80, 52865298. https://doi.org/10.1002/ps.8257CrossRefGoogle ScholarPubMed
Li, H, Wang, W, Yang, X, Kang, G, Zhang, Z and Wu, K (2024 b) Toxic effects of Bt-(Cry1Ab+ Vip3Aa) maize (‘DBN3601T’ event) on the Asian corn borer Ostrinia furnacalis (Guenée) in southwestern China. Agronomy 14, 1906. https://doi.org/10.3390/agronomy14091906CrossRefGoogle Scholar
Li, X, Chen, T, Chen, L, Ren, J, Ullah, F, Yi, S, Pan, Y, Zhou, S, Guo, W, Fu, K and Li, YX (2024 c) Trichogramma chilonis is a promising biocontrol agent against Tuta absoluta in China: results from laboratory and greenhouse experiments. Entomologia Generalis 44, 357365. https://doi.org/10.1127/entomologia/2024/2457CrossRefGoogle Scholar
Liang, YY, Luo, M, Fu, XG, Zheng, LX and Wei, HY (2020) Mating disruption of Chilo suppressalis from sex pheromone of another pyralid rice pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Journal of Insect Science 20, 19. https://doi.org/10.1093/jisesa/ieaa050CrossRefGoogle Scholar
Liu, D and Yuan, Q (1981) Studies on the economic threshold of the Asiatic corn borer Ostrinia furnacalis (Guenee) in the cotton field. Acta Phytophylacica Sinica (In Chinese; English Summary) 8, 241247.Google Scholar
Liu, S, Xu, Y, Gao, Y, Zhao, Y, Zhang, A, Zang, L, Chunsheng, W and Zhang, L (2020) Panaxadiol saponins treatment caused the subtle variations in the global transcriptional state of Asiatic corn borer, Ostrinia furnacalis. Journal of Ginseng Research 44, 123134. https://doi.org/10.1016/j.jgr.2017.12.002CrossRefGoogle ScholarPubMed
Liu, X, Liu, S, Long, Y, Wang, Y, Zhao, W, Shwe, SM, Wang, Z, He, K and Bai, S (2022) Baseline susceptibility and resistance allele frequency in Ostrinia furnacalis in relation to Cry1Ab toxins in China. Toxins 14, 255. https://doi.org/10.3390/toxins14040255CrossRefGoogle ScholarPubMed
Liu, JL, Feng, X, Abbas, A, Abbas, S, Hafeez, F, Han, X, Romano, D and Chen, RZ (2023 a) Larval competition analysis and its effect on growth of Ostrinia furnacalis (Lepidoptera: Crambidae) at natural conditions in northeast China. Environmental Entomology 52, 970982. https://doi.org/10.1093/ee/nvad089CrossRefGoogle ScholarPubMed
Liu, K, Wang, Z, Zhang, T and He, K (2023 b) Intra-population alteration on voltinism of Asian corn borer in response to climate warming. Biology 12, 187. https://doi.org/10.3390/biology12020187CrossRefGoogle ScholarPubMed
Logroño, M (2006) Yield damage analysis of Asian corn borer infestation in the Philippines, Cargill, Phil. Inc., General Santos City, Philippines, cited in Yorobe, JM Jr., Quicoy, CB, economic impact of Bt corn in the Philippines. Philippine Agricultural Scientist Journal 89, 258267.Google Scholar
López-Ferber, M (2020) Special issue ‘insect viruses and pest management’. Viruses 12, 431. https://doi.org/10.3390/v12040431CrossRefGoogle ScholarPubMed
Louis, J, Peiffer, M, Ray, S, Luthe, DS and Felton, GW (2013) Host-specific salivary elicitor (s) of European corn borer induce defenses in tomato and maize. New Phytologist 199, 6673. https://doi.org/10.1111/nph.12308CrossRefGoogle ScholarPubMed
Lozier, JD and Mills, NJ (2011) Predicting the potential invasive range of light brown apple moth (Epiphyas postvittana) using biologically informed and correlative species distribution models. Biological Invasions 13, 24092421. https://doi.org/10.1007/s10530-011-0052-5CrossRefGoogle Scholar
Ma, X, Liu, X, Ning, X, Zhang, B, Han, F, Guan, X, Tan, Y and Zhang, Q (2008) Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer (Lepidoptera: Crambidae). Journal of Invertebrate Pathology 99, 123128. https://doi.org/10.1016/j.jip.2008.06.014CrossRefGoogle ScholarPubMed
Majeed, M, Fiaz, M, Ma, CS and Afzal, M (2017) Entomopathogenicity of three muscardine fungi, Beauveria bassiana, Isaria fumosorosea and Metarhizium anisopliae, against the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Egyptian Journal of Biological Pest Control 27, 211.Google Scholar
Marrone, PG (2024) Status of the biopesticide market and prospects for new bioherbicides. Pest Management Science 80, 8186. https://doi.org/10.1002/ps.7403CrossRefGoogle ScholarPubMed
Meynadier, G, Galichet, P, Veyrunes, J and Amargier, A (1977) Mise en évidence d'une densonucléose chez Diatraea saccharalis [Lep.: Pyralidae]. Entomophaga 22, 115120. https://doi.org/10.1007/BF02372997CrossRefGoogle Scholar
Mitchell, ER (1978) Relationship of planting date to damage by earworms in commercial sweet corn in north central Florida. Florida Entomologist 61, 251255. https://doi.org/10.2307/3494220CrossRefGoogle Scholar
Mittal, M, Gupta, V, Aamash, M and Upadhyay, T (2024) Machine learning for pest detection and infestation prediction: a comprehensive review. Data Mining Knowledge Discovery 14, e1551. https://doi.org/10.1002/widm.1551CrossRefGoogle Scholar
Morallo-Rejesus, B, Buctuanon, E and Rejesus, R (1990) Defining the economic threshold determinants for the Asian corn borer, Ostrinia furnacalis (Guenee) in the Philippines. International Journal of Pest Management 36, 114121. https://doi.org/https://doi.org/10.1080/09670879009371453Google Scholar
Morse, DH (1971) The insectivorous bird as an adaptive strategy. Annual Review of Ecology and Systematics 2, 177200. https://doi.org/10.1146/annurev.es.02.110171.001141CrossRefGoogle Scholar
Mutuura, A and Munroe, E (1970) Taxonomy and distribution of the European corn borer and allied species: genus Ostrinia (Lepidoptera: Pyralidae). The Memoirs of the Entomological Society of Canada 102(S71), 1112. https://doi.org/10.4039/entm10271fvCrossRefGoogle Scholar
Myint, YY, Huang, X, Bai, S, Zhang, T, Babendreier, D, He, K and Wang, Z (2023) Field evaluation of Trichogramma strains collected from Myanmar for biological control of Asian corn borer, Ostrinia furnacalis (Guenée)(Lepidoptera: Crambidae) and sustainable maize production. Crop Protection 171, 106284. https://doi.org/10.1016/j.cropro.2023.106284CrossRefGoogle Scholar
Nafus, D and Schreiner, I (1987) Location of Ostrinia furnacalis (Lepidoptera: Pyralidae) eggs and larvae on sweet corn in relation to plant growth stage. Journal of Economic Entomology 80, 411416. https://doi.org/10.1093/jee/80.2.411CrossRefGoogle Scholar
Nafus, D and Schreiner, I (1991) Review of the biology and control of the Asian corn borer, Ostrinia furnacalis (Lep: Pyralidae). International Journal of Pest Management 37, 4156. https://doi.org/10.1080/09670879109371535Google Scholar
Nicolas, JA, Tamayo, NV and Caoili, BL (2013) Improving the yield of glutinous white corn by distance of planting and use of biocontrol agents for management of Asian corn borer, Ostrinia furnacalis (Guenéeguenee). The Philippine Entomologist 27, 206. https://www.ukdr.uplb.edu.ph/journal-articles/4809Google Scholar
Nyffeler, M, Şekercioğlu, ÇH and Whelan, CJ (2018) Insectivorous birds consume an estimated 400–500 million tons of prey annually. Science of Nature 105, 113. https://doi.org/10.1007/s00114-018-1571-zCrossRefGoogle ScholarPubMed
Nylin, S (2001) Life history perspectives on pest insects: what's the use? Austral Ecology 26, 507517. https://doi.org/10.1046/j.1442-9993.2001.01134.xCrossRefGoogle Scholar
O'Sullivan, D and Bourke, M (1975) Effectiveness of lindane, DDT and monocrotophos for the control of the corn borer Ostrinia furnicalis Guenee (Lepidoptera: Pyralidae) in maize on New Britain. Papua New Guinea Agricultural Journal 26, 1719.Google Scholar
Paillot, A (1928) On the natural equilibrium of Pyrausta nubilalis Hb. Scientific Report, 77106.Google Scholar
Pavan, O, Boucias, D, Almeida, L, Gaspar, J, Botelho, P and Degaspari, N (1983) Granulosis Virus of Diatraea saccharalis (DsGV): pathogenicity, replication and ultrastructure. In Proceedings of the International Congress of the International Society of Sugar Cane Technologists (ISSCT ‘83).Google Scholar
Phoofolo, MW, Obrycki, JJ and Lewis, LC (2001) Quantitative assessment of biotic mortality factors of the European corn borer (Lepidoptera: Crambidae) in field corn. Journal of Economic Entomology 94, 617622. https://doi.org/10.1603/0022-0493-94.3.617CrossRefGoogle ScholarPubMed
Qin, WB, Abbas, A, Abbas, S, Alam, A, Chen, DH, Hafeez, F, Ali, J, Romano, D and Chen, RZ (2024) Automated lepidopteran pest developmental stages classification via transfer learning framework. Environmental Entomology 53, 10621077. https://doi.org/10.1093/ee/nvae085CrossRefGoogle ScholarPubMed
Quan, Y, Mason, CE, He, K, Wang, Z and Wei, H (2023) Impact of heat waves on egg survival and biological performance across life stages in the Asian corn borer. Entomologia Experimentalis et Applicata 171, 129137. https://doi.org/10.1111/eea.13262CrossRefGoogle Scholar
Rahayu, T and Trisyono, YA (2018) Fitness of Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae) reared in an artificial diet. Journal of Asia-Pacific Entomology 21, 823828. https://doi.org/10.1016/j.aspen.2018.06.003CrossRefGoogle Scholar
Reddy, PP (2017) Agro-Ecological Approaches to Pest Management for Sustainable Agriculture. Singapore: Springer. https://doi.org/10.1007/978-981-10-4325-3CrossRefGoogle Scholar
Rhioui, W, Al Figuigui, J, Lahlali, R, Laasli, SE, Boutagayout, A, El Jarroudi, M and Belmalha, S (2023) Towards sustainable vegetable farming: exploring agroecological alternatives to chemical products in the Fez-Meknes region of Morocco. Sustainability 15, 7412. https://doi.org/10.3390/su15097412CrossRefGoogle Scholar
Romeis, J, Naranjo, SE, Meissle, M and Shelton, AM (2019) Genetically engineered crops help support conservation biological control. Biological Control 130, 136154. https://doi.org/10.1016/j.biocontrol.2018.10.001CrossRefGoogle Scholar
Rowen, EK, Regan, KH, Barbercheck, ME and Tooker, JF (2020) Is tillage beneficial or detrimental for insect and slug management? A meta-analysis. Agriculture, Ecosystems Environment 294, 106849. https://doi.org/10.1016/j.agee.2020.106849CrossRefGoogle Scholar
Saddam, B, Idrees, MA, Kumar, P and Mahamood, M (2024) Biopesticides: uses and importance in insect pest control: a review. International Journal of Tropical Insect Science 44, 10131020. https://doi.org/10.1007/s42690-024-01212-wCrossRefGoogle Scholar
Schmutterer, H (1985) Which insect pests can be controlled by application of neem seed kernel extracts under field conditions? Zeitschrift für angewandte Entomologie 100, 468475. https://doi.org/10.1111/j.1439-0418.1985.tb02808.xCrossRefGoogle Scholar
Secil, ES, Sevim, A, Demirbag, Z and Demir, I (2012) Isolation, characterization and virulence of bacteria from Ostrinia nubilalis (Lepidoptera: Pyralidae). Biologia 67, 767776. https://doi.org/10.2478/s11756-012-0070-5CrossRefGoogle Scholar
Sharma, H and Ortiz, R (2002) Host plant resistance to insects: an eco-friendly approach for pest management and environment conservation. Journal of Environmental Biology 23, 111135.Google ScholarPubMed
Shen, X, Fu, X, Huang, Y, Guo, J, Wu, Q, He, L, Yang, X and Wu, K (2020) Seasonal migration patterns of Ostrinia furnacalis (Lepidoptera: Crambidae) across the Bohai strait in northern China. Journal of Economic Entomology 113, 194202. https://doi.org/10.1093/jee/toz288CrossRefGoogle ScholarPubMed
Shinfoon, C, Xing, Z, Siuking, L and Duanping, H (1985) Growth-disrupting effects of azadirachtin on the larvae of the Asiatic corn borer (Ostrinia furnacalis Guenée) (Lepid., Pyralidae). Zeitschrift für angewandte Entomologie 99, 276284. https://doi.org/10.1111/j.1439-0418.1985.tb01989.xCrossRefGoogle Scholar
Showers, W, Chiang, H, Keaster, A, Hill, R, Reed, G, Sparks, A and Musick, G (1975) Ecotypes of the European corn borer in North America. Environmental Entomology 4, 753760. https://doi.org/10.1093/ee/4.5.753CrossRefGoogle Scholar
Singh, KA, Nangkar, I, Landge, A, Rana, M and Srisvastava, S (2024) Entomopathogens and their role in insect pest management. Journal of Biological Control 38, 1. https://doi.org/10.18311/jbc/2024/35752CrossRefGoogle Scholar
Somasundaram, J, Sinha, N, Dalal, RC, Lal, R, Mohanty, M, Naorem, A, Hati, K, Chaudhary, R, Biswas, A and Patra, A (2020) No-till farming and conservation agriculture in south Asia–issues, challenges, prospects and benefits. Critical Reviews in Plant Sciences 39, 236279. https://doi.org/10.1080/07352689.2020.1782069CrossRefGoogle Scholar
Sparks, TC, Wessels, FJ, Lorsbach, BA, Nugent, BM and Watson, GB (2019) The new age of insecticide discovery-the crop protection industry and the impact of natural products. Pesticide Biochemistry and Physiology 161, 1222. https://doi.org/10.1016/j.pestbp.2019.09.002CrossRefGoogle ScholarPubMed
Steinhaus, E (1951) Report on diagnoses of diseased insects 1944–1950. Hilgardia 20, 629678. https://doi.org/10.3733/hilg.v20n22p629CrossRefGoogle Scholar
Steinhaus, EA (1952) Microbial infections in European corn borer larvae held in the laboratory. Journal of Economic Entomology 45, 4851. https://doi.org/10.1093/jee/45.1.48CrossRefGoogle Scholar
Steinhaus, EA and Marsh, GA (1962) Report of diagnoses of diseased insects 1951–1961. Hilgardia 33, 349490.CrossRefGoogle Scholar
Steyn, VM, Malan, AP and Addison, P (2024) Experimental quantification of mating disruption for false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae), in stone fruit and table grape cultivation. Crop Protection 182, 106737. https://doi.org/10.1016/j.cropro.2024.106737CrossRefGoogle Scholar
Su, G, Chen, B, Li, Z, Gui, F and He, S (2016) Effects on growth and development of Ostrinia furnacalis by feeding with different host plants. Journal of Yunnan Agricultural University 31, 210217.Google Scholar
Subiadi, S, Trisyono, YA and Martono, E (2014) Aras kerusakan ekonomi (AKE) larva Ostrinia furnacalis (Lepidoptera: Crambidae) pada tiga fase pertumbuhan tanaman jagung. Journal Entomologia Indonesia 11, 1919. https://doi.org/10.5994/jei.11.1.19CrossRefGoogle Scholar
Sui, L, Zhu, H, Wang, D, Zhang, Z, Bidochka, MJ, Barelli, L, Lu, Y and Li, Q (2024) Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide. Pest Management Science 80, 45754584. https://doi.org/10.1002/ps.8163CrossRefGoogle ScholarPubMed
Sun, D, Quan, Y, Wang, Y, Wang, Z and Kanglai, H (2021) Resistance of transgenic Bt maize (Ruifeng 125, DBN9936 & DBN9978) to Asian corn borer. Plant Protection 3, 206211.Google Scholar
Sun, C, Li, S, Wang, K, Yin, X, Wang, Y, Du, M, Wei, J and An, S (2022) Cyclosporin A as a potential insecticide to control the Asian corn borer, Ostrinia furnacalis Guenée (Lepidoptera: Pyralidae). Insects 13, 965. https://doi.org/10.3390/insects13100965CrossRefGoogle Scholar
Surajit, DM, Ramkumar, G, Karthi, S and Fengliang, J (2023) New and Future Development in Biopesticide Research: Biotechnological Exploration. Singapore: Springer. https://doi.org/10.1007/978-981-16-3989-0Google Scholar
Tabata, J, Hattori, Y, Sakamoto, H, Yukuhiro, F, Fujii, T, Kugimiya, S, Mochizuki, A, Ishikawa, Y and Kageyama, D (2011) Male killing and incomplete inheritance of a novel Spiroplasma in the moth Ostrinia zaguliaevi. Microbial Ecology 61, 254263. https://doi.org/10.1007/s00248-010-9799-yCrossRefGoogle ScholarPubMed
Talekar, NYS, Pin Lin, C, Fei Yin, Y, Yu Ling, M, De Wang, Y and Chang, DC (1991) Characteristics of infestation by Ostrinia furnacalis (Lepidoptera: Pyralidae) in mungbean. Journal of Economic Entomology 84, 14991502. https://doi.org/10.1093/jee/84.5.1499CrossRefGoogle Scholar
Tan, S, Cayabyab, B, Alcantara, E, Ibrahim, Y, Huang, F, Blankenship, EE and Siegfried, BD (2011) Comparative susceptibility of Ostrinia furnacalis, Ostrinia nubilalis and Diatraea saccharalis (Lepidoptera: Crambidae) to Bacillus thuringiensis Cry1 toxins. Crop Protection 30, 11841189. https://doi.org/10.1016/j.cropro.2011.05.009CrossRefGoogle Scholar
Tian, D, Peiffer, M, Shoemaker, E, Tooker, J, Haubruge, E, Francis, F, Luthe, DS and Felton, GW (2012) Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant. PLoS ONE 7, e36168. https://doi.org/10.1371/journal.pone.0036168CrossRefGoogle ScholarPubMed
Toepfer, S, Yan, X and Vandenbossche, B (2024) Applications of entomopathogenic nematodes for insect pest control in corn. In Entomopathogenic Nematodes as Biological Control Agents. GB, UK: CABI, 236254. https://doi.org/10.1079/9781800620322.0014CrossRefGoogle Scholar
Tosi, S, Sfeir, C, Carnesecchi, E and Chauzat, MP (2022) Lethal, sublethal, and combined effects of pesticides on bees: a meta-analysis and new risk assessment tools. Science of the Total Environment 844, 156857. https://doi.org/10.1016/j.scitotenv.2022.156857CrossRefGoogle Scholar
Trematerra, P and Colacci, M (2019) Recent advances in management by pheromones of Thaumetopoea moths in urban parks and woodland recreational areas. Insects 10, 395. https://doi.org/10.3390/insects10110395CrossRefGoogle Scholar
Ullah, F, Gul, H, Abbas, A, Hafeez, M, Desneux, N and Li, Z (2023 a) Genome editing in crops to control insect pests. In: Prakash CS, Fiaz S, Nadeem MA, Baloch FS and Qayyum A (eds) Sustainable Agriculture in the Era of the OMICs Revolution. Cham: Springer, 297313. https://doi.org/10.1007/978-3-031-15568-0_13CrossRefGoogle Scholar
Ullah, F, Gul, H, Tariq, K, Hafeez, M, Desneux, N and Song, D (2023 b) Silencing of Cytochrome P450 genes CYP6CY14 and CYP6DC1 in Aphis gossypii by RNA interference enhances susceptibility to clothianidin. Entomologia Generalis 43, 669678. https://doi.org/10.1127/entomologia/2023/2002CrossRefGoogle Scholar
Ullah, F, Güncan, A, Gul, H, Hafeez, M, Zhou, S, Wang, Y, Zhang, Z, Huang, J, Ghramh, HA and Guo, W (2024 a) Spinosad-induced intergenerational sublethal effects on Tuta absoluta: biological traits and related genes expressions. Entomologia Generalis 44, 395404. https://doi.org/10.1127/entomologia/2024/2452CrossRefGoogle Scholar
Ullah, F, Abbas, A, Gul, H, Güncan, A, Hafeez, M, Gadratagi, B-G, Cicero, L, Ramirez-Romero, R, Desneux, N and Li, Z (2024 b) Insect resilience: unraveling responses and adaptations to cold temperatures. Journal of Pest Science 97, 11531169. https://doi.org/10.1007/s10340-023-01741-2CrossRefGoogle Scholar
Ullah, F, Güncan, A, Abbas, A, Gul, H, Guedes, RNC, Zhang, Z, Huang, J, Khan, KA, Ghramh, HA, Chavarín-Gómez, LE, Ramirez-Romero, R, Li, X, Desneux, N and Lu, Y (2024 c) Sublethal effects of neonicotinoids on insect pests. Entomologia Generalis 44, 1145–1160. https://doi.org/10.1127/entomologia/2024/2730CrossRefGoogle Scholar
Venkatasaichandrakanth, P and Iyapparaja, M (2024) A survey on pest detection and classification in field crops using artificial intelligence techniques. International Journal of Intelligent Robotics Applications 8, 709734. https://doi.org/10.1007/s41315-024-00347-wCrossRefGoogle Scholar
Wan, F-H and Yang, N-W (2016) Invasion and management of agricultural alien insects in China. Annual Review of Entomology 61, 7798. https://doi.org/10.1146/annurev-ento-010715-023916CrossRefGoogle ScholarPubMed
Wang, Z and Wang, X (2019) Current status and management strategies for corn pests and diseases in China. Plant Protection 45, 111.Google Scholar
Wang, X, Song, R, Zhang, Z and Liu, P (2001) Damage and control of the corn borer of its second generation under the different sowing periods of summer maize. Entomological Knowledge 38, 194197.Google Scholar
Wang, Z, He, K and Yan, S (2005) Large-scale augmentative biological control of Asian corn borer using Trichogramma in China: a success story. In Proceedings of the Second International Symposium on Biological Control of Arthropods, Davos, Switzerland.Google Scholar
Wang, Z, He, K, Zhang, F, Lu, X and Babendreier, D (2014) Mass rearing and release of Trichogramma for biological control of insect pests of corn in China. Biological Control 68, 136144. https://doi.org/10.1016/j.biocontrol.2013.06.015CrossRefGoogle Scholar
Wang, Y, Quan, Y, Yang, J, Shu, C, Wang, Z, Zhang, J, Gatehouse, AM, Tabashnik, BE and He, K (2019) Evolution of Asian corn borer resistance to Bt toxins used singly or in pairs. Toxins 11, 461. https://doi.org/10.3390/toxins11080461CrossRefGoogle ScholarPubMed
Wang, X, Xu, Y, Huang, J, Jin, W, Yang, Y and Wu, Y (2020) CRISPR-mediated knockout of the ABCC2 gene in Ostrinia furnacalis confers high-level resistance to the Bacillus thuringiensis Cry1Fa toxin. Toxins 12, 246. https://doi.org/10.3390/toxins12040246CrossRefGoogle Scholar
Wang, X, Ding, X, Fu, K, Guo, W, Zhan, F, Yuan, Z, Jia, Z, Zhou, L, Jiang, X and Osman, G (2022) Molecular identification and efficacy of entomopathogenic fungi isolates against larvae of the Asian corn borer Ostrinia furnacalis (Lepidoptera: Crambidae) in Xinjiang, China. Journal of Applied Microbiology 133, 29792992. https://doi.org/10.1111/jam.15749CrossRefGoogle ScholarPubMed
Wang, Y, Zhao, W, Han, S, Wang, L, Chang, X, Liu, K, Quan, Y, Wang, Z and He, K (2023) Seven years of monitoring susceptibility to Cry1Ab and Cry1F in Asian corn borer. Toxins 15, 137. https://doi.org/10.3390/toxins15020137CrossRefGoogle ScholarPubMed
Wei, X and Chen, R (2020) Effects of host plants on the development and protective enzyme activity of Ostrinia furnacalis. Chinese Journal of Applied Entomology 57, 355362.Google Scholar
Wei, HY and Du, JW (2004) Sublethal effects of larval treatment with deltamethrin on moth sex pheromone communication system of the Asian corn borer, Ostrinia furnacalis. Pesticide Biochemistry and Physiology 80, 1220. https://doi.org/10.1016/j.pestbp.2004.05.001CrossRefGoogle Scholar
Wu, LH, Hill, MP, Thomson, LJ and Hoffmann, AA (2018) Assessing the current and future biological control potential of Trichogramma ostriniae on its hosts Ostrinia furnacalis and Ostrinia nubilalis. Pest Management Science 74, 15131523. https://doi.org/10.1002/ps.4841CrossRefGoogle ScholarPubMed
Xiao, L, He, HM, Huang, LL, Geng, T, Fu, S and Xue, FS (2016) Variation of life-history traits of the Asian corn borer, Ostrinia furnacalis in relation to temperature and geographical latitude. Ecology and Evolution 6, 51295143. https://doi.org/10.1002/ece3.2275CrossRefGoogle ScholarPubMed
Xie, HC, Li, DS, Zhang, HG, Mason, CE, Wang, ZY, Lu, X, Cai, WZ and He, KL (2015) Seasonal and geographical variation in diapause and cold hardiness of the Asian corn borer, Ostrinia furnacalis. Insect Science 22, 578586. https://doi.org/10.1111/1744-7917.12137CrossRefGoogle ScholarPubMed
Xu, C, Ding, J, Zhao, Y, Luo, J, Mu, W and Zhang, Z (2017) Cyantraniliprole at sublethal dosages negatively affects the development, reproduction, and nutrient utilization of Ostrinia furnacalis (Lepidoptera: Crambidae). Journal of Economic Entomology 110, 230238. https://doi.org/10.1093/jee/tow248Google ScholarPubMed
Yang, Z and Du, J (2003) Effects of sublethal deltamethrin on the chemical communication system and PBAN activity of Asian corn borer, Ostrinia furnacalis (Güenee). Journal of Chemical Ecology 29, 16111619. https://doi.org/10.1023/A:1024222830332CrossRefGoogle ScholarPubMed
Yang, DB, Zhang, LN, Yan, XJ, Wang, ZY and Yuan, HZ (2014) Effects of droplet distribution on insecticide toxicity to Asian corn borers (Ostrinia furnacalis) and spiders (Xysticus ephippiatus). Journal of Integrative Agriculture 13, 124133. https://doi.org/10.1016/S2095-3119(13)60507-9CrossRefGoogle Scholar
Yang, Z, Plotkin, D, Landry, JF, Storer, C and Kawahara, AY (2021) Revisiting the evolution of Ostrinia moths with phylogenomics (Pyraloidea: Crambidae: Pyraustinae). Systematic Entomology 46, 827838. https://doi.org/10.1111/syen.12491CrossRefGoogle Scholar
Yu, G, Zheng, L, Quan, Y and Wei, H (2018) Sublethal pesticide exposure improves resistance to infection in the Asian corn borer. Ecological Entomology 43, 326. https://doi.org/10.1111/een.12503CrossRefGoogle Scholar
Yuan, Z, Wang, W, Wang, Z, He, K and Bai, S (2015) Host plants of the Asian corn borer, Ostrinia furnacalis (Guenée)(Lepidoptera: Crambidae). Acta Phytophylacica Sinica 42, 957964.Google Scholar
Zang, L, Wang, S, Zhang, F and Desneux, N (2021) Biological control with Trichogramma in China: history, present status, and perspectives. Annual Review of Entomology 66, 463484. https://doi.org/10.1146/annurev-ento-060120-091620CrossRefGoogle Scholar
Zhang, J, Ren, B, Yuan, X, Zang, L, Ruan, C, Sun, G and Shao, X (2014) Effects of host-egg ages on host selection and suitability of four Chinese Trichogramma species, egg parasitoids of the rice striped stem borer. Chilo suppressalis. BioControl 59, 159166. https://doi.org/10.1007/s10526-013-9557-4Google Scholar
Zhang, T, Coates, B, Wang, Y, Wang, Y, Bai, S, Wang, Z and He, K (2017) Down-regulation of aminopeptidase N and ABC transporter subfamily G transcripts in Cry1Ab and Cry1Ac resistant Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). International Journal of Biological Sciences 13, 835. https://doi.org/10.7150/ijbs.18868CrossRefGoogle ScholarPubMed
Zhang, Y, Zhang, Y, Fu, M, Yin, G, Sayre, RT, Pennerman, KK and Yang, F (2018) RNA interference to control Asian corn borer using dsRNA from a novel glutathione-S-transferase gene of Ostrinia furnacalis (Lepidoptera: Crambidae). Journal of Insect Science 18, 16. https://doi.org/10.1093/jisesa/iey100CrossRefGoogle ScholarPubMed
Zhang, P, Jialaliding, Z, Gu, J, Merchant, A, Zhang, Q and Zhou, X (2023) Knockout of ovary serine protease leads to ovary deformation and female sterility in the Asian corn borer, Ostrinia furnacalis. International Journal of Molecular Sciences 24, 16311. https://doi.org/10.3390/ijms242216311CrossRefGoogle ScholarPubMed
Zhou, H, Du, J and Huang, Y (2005) Effects of sublethal doses of malathion on responses to sex pheromones by male Asian corn borer moths, Ostrinia furnacalis (Guenée). Journal of Chemical Ecology 31, 16451656. https://doi.org/10.1007/s10886-005-5804-1CrossRefGoogle ScholarPubMed
Zimmermann, G, Huger, AM, Langenbruch, GA and Kleespies, RG (2016) Pathogens of the European corn borer, Ostrinia nubilalis, with special regard to the microsporidium Nosema pyrausta. Journal of Pest Science 89, 329346. https://doi.org/10.1007/s10340-016-0749-4CrossRefGoogle Scholar