Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T10:49:16.842Z Has data issue: false hasContentIssue false

Geostatistics as a tool to study mite dispersion in physic nut plantations

Published online by Cambridge University Press:  21 April 2015

J.F. Rosado
Affiliation:
Federal University of Tocantins (UFT), PO BOX 66, Gurupi, State of Tocantins, Brazil Department of Entomology, Federal University of Viçosa, 36570-900 Viçosa, MG, Brazil
M.C. Picanço
Affiliation:
Department of Entomology, Federal University of Viçosa, 36570-900 Viçosa, MG, Brazil
R.A. Sarmento*
Affiliation:
Federal University of Tocantins (UFT), PO BOX 66, Gurupi, State of Tocantins, Brazil
R.M. Pereira
Affiliation:
Department of Entomology, Federal University of Viçosa, 36570-900 Viçosa, MG, Brazil
M. Pedro-Neto
Affiliation:
Federal University of Tocantins (UFT), PO BOX 66, Gurupi, State of Tocantins, Brazil
T.V.S. Galdino
Affiliation:
Department of Plant Production, Federal University of Viçosa, 36570-900 Viçosa, MG, Brazil
A. de Sousa Saraiva
Affiliation:
Federal University of Tocantins (UFT), PO BOX 66, Gurupi, State of Tocantins, Brazil
E.A.L. Erasmo
Affiliation:
Federal University of Tocantins (UFT), PO BOX 66, Gurupi, State of Tocantins, Brazil
*
*Author for correspondence Phone: +55 63 3311 358 5 Fax: +55 63 3311 3501 E-mail: [email protected]

Abstract

Spatial distribution studies in pest management identify the locations where pest attacks on crops are most severe, enabling us to understand and predict the movement of such pests. Studies on the spatial distribution of two mite species, however, are rather scarce. The mites Polyphagotarsonemus latus and Tetranychus bastosi are the major pests affecting physic nut plantations (Jatropha curcas). Therefore, the objective of this study was to measure the spatial distributions of P. latus and T. bastosi in the physic nut plantations. Mite densities were monitored over 2 years in two different plantations. Sample locations were georeferenced. The experimental data were analyzed using geostatistical analyses. The total mite density was found to be higher when only one species was present (T. bastosi). When both the mite species were found in the same plantation, their peak densities occurred at different times. These mites, however, exhibited uniform spatial distribution when found at extreme densities (low or high). However, the mites showed an aggregated distribution in intermediate densities. Mite spatial distribution models were isotropic. Mite colonization commenced at the periphery of the areas under study, whereas the high-density patches extended until they reached 30 m in diameter. This has not been reported for J. curcas plants before.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anitha, K. & Varaprasad, K.S. (2012) Jatropha pests and diseases, an overview. pp. 175218 in Carels, N., Sujatha, M. & Bahadur, B. (Eds) Jatropha, Challenges for a New Energy Crop. New York, Springer.Google Scholar
Arruda, R.L., Queiroz, P.A., Costa, N.V., Saraiva, A.S. & Erasmo, E.A.L. (2013) Avaliação do crescimento inicial de Jatropha curcas L. sob diferentes doses de fósforo aplicados na base. Journal of Biotechnology and Biodiversity 4, 378389.Google Scholar
Bacca, T., Lima, E.R., Picanço, M.C., Guedes, R.N.C. & Viana, J.H.N. (2006) Optimum spacing of pheromone traps for monitoring the Coffee leaf miner Leucoptera coffeella . Entomologia Experimentalis et Applicata 119, 3945.Google Scholar
Barrigossi, J.A.F., Young, L.J., Crawford, C.A.G., Hein, G.L. & Higley, L.G. (2001) Spatial and probability distribution of Mexican bean beetle (Coleoptera: Coccinellidae) egg mass populations in dry bean. Environmental Entomology 30, 244253.Google Scholar
Begon, M., Townsend, C.R. & Harper, J.L. (2005) Ecology: From Individuals to Ecosystems, 4th edn. 752 pp. Oxford, UK, Wiley-Blackwell.Google Scholar
Binns, M.R., Nyrop, J.P. & Werf, W.V.D. (2000) Sampling and Monitoring in Crop Protection: the Theorical Basis for Developing Practical Decision Guides. 281 pp. Crambridge, CABI.Google Scholar
Bounfour, M. & Tanigoshi, L.K. (2001) Effect of temperature on development and demographic parameters of Tetranychus urticae and Eotetranychus carpini borealis (Acari: Tetranychidae). Annals of the Entomological Society of America 94, 400404.Google Scholar
Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F. & Konopka, A.E. (1994) Field scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal 58, 15011511.Google Scholar
Cruz, W.P., Sarmento, R.A., Teodoro, A.V., Erasmo, E.A.L., Neto, M.P., Ignácio, M. & Júnior, D.F.F. (2012) Acarofauna em cultivo de pinhão-manso e plantas espontâneas associadas. Pesquisa Agropecuária Brasileira 47, 319327.Google Scholar
Cruz, W.P., Sarmento, R.A., Teodoro, A.V., Pedro Neto, M. & Ignácio, M. (2013) Driving factors of the communities of phytophagous and predatory mites in a physic nut plantation and spontaneous plants associated. Experimental Applied Acarology 60, 509519.CrossRefGoogle Scholar
Diaz, B.M., Barrios, L. & Fereres, A. (2012) Interplant movement and spatial distribution of alate and apterous morphs of Nasonovia ribisnigri (Homoptera: Aphididae) on lettuce. Bulletin Entomological Research 102, 406414.Google Scholar
Elliott, J.M. (1983) Some Methods for the Statistical Analysis of Samples of Benthic Invertebrates. 157 pp. London, Freshwater Biological Association.Google Scholar
Evaristo, A., Venzon, M., Matos, F., Freitas, R., Kuki, K. & Dias, L.D. (2013) Susceptibility and physiological responses of Jatropha curcas accessions to broad mite infestation. Experimental and Applied Acarology 60, 485496.CrossRefGoogle ScholarPubMed
Farias, P.R.S., Roberto, S.R., Lopes, J.R.S. & Perecin, D. (2004) Geostatistical characterization of the spatial distribution of Xylella fastidiosa sharpshooter vectors on citrus. Neotropical Entomology 33, 1320.Google Scholar
Ferreira, R.C.F., Oliveira, J.V., Haji, F.N.P. & Gondim, M.G.C. Jr (2006) Biologia, exigências térmicas e tabela de vida de fertilidade do ácaro-branco Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) em videira (Vitis vinifera L.) cv. Itália. Neotropical Entomology 35, 126132.CrossRefGoogle ScholarPubMed
Gumprecht, D., Muller, W.G. & Rodriguez-Diaz, J.M. (2009) Designs for detecting spatial dependence. Geographical Analysis 41, 127143.Google Scholar
Hammen, T.V.D., Montserrat, M., Sabelis, M.W., de Roos, A.M. & Janssen, A. (2012) Whether ideal free or not, predatory mites distribute so as to maximize reproduction. Oecologi 169, 95100.CrossRefGoogle ScholarPubMed
Hanski, I. (1999) Metapopulation Ecology. Oxford, Oxford University Press.CrossRefGoogle Scholar
Hortal, J., Roura-Pascual, N., Sanders, N.J. & Rahbek, C. (2010) Understanding (insect) species distributions across spatial scales. Ecography 33, 5153.Google Scholar
Isaaks, E.H. & Srivastava, R.M. (1989) An Introduction to Applied Geostatistics. 561 pp. New York, Oxford University.Google Scholar
Karban, R. & Agrawal, A.A. (2002) Herbivore offense. Annual Review of Ecology, Evolution, and Systematics 33, 641664.Google Scholar
Krebs, C.J. (1989) Ecological Methodology. 654 pp. New York, Harper and Hall.Google Scholar
Kumar, A. & Sharma, S. (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Industrial Crops and Products 28, 110.Google Scholar
Leite, G.L.D., Picanço, M., Zanuncio, J.C. & Ecole, C.C. (2006) Factors affecting herbivory of Thrips palmi (Thysanoptera: Thripidae) and Aphis gossypii (Homoptera: Aphididae) on the eggplant (Solanum melongena). Brazilian Archives of Biology and Technology 49, 361369.Google Scholar
Liebhold, A.M., Rossi, R.E. & Kemp, W.P. (1993) Geostatistics and geographic information systems in applied insect ecology. Annual Review of Entomology 38, 303327.Google Scholar
Liu, Y.H. & Tsai, J.H. (1998) Development, survivorship, and reproduction of Tetranychus tumidus Banks (Acarina: Tetranichidae) in relation to temperature. International Journal of Acarology 24, 245252.CrossRefGoogle Scholar
Lopes, E.M. (2009) Bioecologia de Polyphagotarsonemus latus em acessos de pinhão manso (Jatropha curcas). Dissertation, Federal University of Viçosa.Google Scholar
Matheron, G. (1963) Principles of geostatistics. Economic Geology 58, 12461266.Google Scholar
Midgarden, D.G., Youngman, R.R. & Fleischer, S.J. (1993) Spatial analysis of counts of Western corn rootworm (Coleoptera: Chrysomelidae) adults on yellow sticky traps in corn, Geostatistics and dispersion indices. Environmental Entomology 22, 11241133.Google Scholar
Moraes, G.J. & Flechtmann, C.H.W. (2008) Manual de acarologia: Acarologia básica e ácaros de plantas cultivadas no Brasil. 288 pp. Ribeirão Preto, Holos.Google Scholar
Murphy, P.A. & Sternitzke, H.S. (1979) Growth and yield for loblolly pine in West Gulf. United States. U.S. Department of Agriculture Forest Service Research 1, 154158.Google Scholar
Napierała, A., Błoszyk, J., Kozak, J. & Bruin, J. (2006) Spatial distribution of mites of the suborder Uropodina (Acari: Mesostigmata) in a small isolated forest area. Experimental and Applied Acarology 39, 289295.Google Scholar
Pedro-Neto, M., Sarmento, R.A., Oliveira, W.P., Picanço, M.C. & Erasmo, E.A.L. (2013) Biologia e tabela de vida do ácaro-vermelho Tetranychus bastosi em pinhão-manso. Pesquisa Agropecuária Brasileira 48, 353357.Google Scholar
Rijal, J.P., Brewster, C.C. & Bergh, J.C. (2014) Spatial distribution of grape root borer (Lepidoptera: Sesiidae) infestations in Virginia vineyards and implications for sampling. Environmental Entomology 43, 716728.Google Scholar
Robertson, G.P. (2008) GS+ Geostatistics for the Environmental Sciences: GS+ User's Guide. 162 pp. Plainwell, Gamma Design Software.Google Scholar
Rogers, C.D., Guimarães, R.M.L., Evans, K.A. & Rogers, S.A. (2014) Spatial and temporal analysis of wheat bulb fly (Delia coarctata, Fallén) oviposition: consequences for pest population monitoring. Journal of Pest Science 88, 7586.Google Scholar
Rosado, J., Sarmento, R., Pedro-Neto, M., Galdino, T.S., Marques, R., Erasmo, E.L. & Picanço, M. (2014) Sampling plans for pest mites on physic nut. Experimental and Applied Acarology 114. doi: 10.1007/s10493-014-9804-0.Google Scholar
Saraiva, A.S., Dornelas, D.F., Dornelas, B.F.M., Goncalves, R.C., Erasmo, E.A.L., Sarmento, R.A. & Nunes, T.V. (2013) Crescimento e produção de pinhão-manso (Jatropha curcas L.) sob doses de fósforo. Journal of Biotechnology and Biodiversity 4, 240248.Google Scholar
Saraiva, A.S., Sarmento, R.A., Erasmo, E.A.L., Pedro-Neto, M., DeSouza, D.J., Teodoro, A.V. & Silva, D.G. (2015) Weed management practices affect diversity and abundance of physic nut mites. Experimental and Applied Acarology 65, 359375. doi: 10.1007/s10493-014-9875-y.Google Scholar
Sarmento, R.A., Lemos, F., Dias, C.R., Kikuchi, W.T., Rodrigues, J.C.P., Pallini, A., Sabelis, M.W. & Janssen, A. (2011) A herbivorous mite down-regulates plant defence and produces web to exclude competitors. PLoS ONE 6, e23757.Google Scholar
Sato, M., Bueno, O.C., Esperancini, M.S.T. & Frigo, E.P. (2009) A cultura do pinhão-manso (Jatropha curcas L.): uso para fins combustíveis e descrição agronômica. Revista Varia Scientia 7, 4762.Google Scholar
Saturnino, H.M., Pacheco, D.D., Kakida, J., Tominaga, N. & Gonçalves, N.P. (2005) Cultura do pinhão-manso (Jatropha curcas L.). Informe Agropecuário 26, 4478.Google Scholar
Sciarretta, A. & Trematerra, P. (2006) Geostatistical characterization of the spatial distribution of Grapholita molesta and Anarsia lineatella males in an agricultural landscape. Journal of Applied Entomology 130, 7383.Google Scholar
Silva, C.A.D. (2002) Biologia e exigências térmicas do ácaro vermelho. Pesquisa Agropecuária Brasileira 37, 573580.Google Scholar
Silva, G.A., Picanço, M.C., Bacci, L., Crespo, A.L.B., Rosado, J.F. & Guedes, R.N.C. (2011) Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta . Pest Management Science 67, 913920.Google Scholar
Southwood, T.R.E. (1962) Migration of terrestrial arthropods in relation to habitat. Biological Reviews 37, 171214.Google Scholar
Sutherland, W.J., Gill, J.A. & Norris, K. (2002) Density-dependent dispersal: concepts, evidence, mechanisms and consequences. pp. 134151 in Bullock, J.M., Kenward, R.E. & Hails, R.S. (Eds) Dispersal Ecology. Oxford, Blackwell Science.Google Scholar
Ulyshen, M.D. (2011) Arthropod vertical stratification in temperate deciduous forests: implications for conservation-oriented management. Forest Ecology and Management 261, 14791489.Google Scholar
Van Der Geest, L.P.S., Elliot, S.L., Breeuwer, J.A.J. & Beerling, E.A.M. (2000) Diseases of mites. Experimental and Applied Acarology 24, 497560.Google Scholar
Veran, S., Simpson, S.J., Sword, G.A., Deveson, E., Piry, S., Hines, J.E. & Berthier, K. (2015) Modeling spatio-temporal dynamics of outbreaking species: influence of environment and migration in a locust. Ecology 96, 737748.Google Scholar
Yarahmadi, F. & Rajabpour, A. (2013) Seasonal dynamics and spatial distribution of Eutetranychus orientalis (Acarina: Tetranychidae) on Albizia lebbeck (Fabaceae) in parks in Ahwaz, southwest Iran. International Journal of Tropical Insect Science 33, 114119.Google Scholar
Young, L. & Young, J. (1998) Statistical Ecology: a Population Perspective. 438 pp. Boston, Kulwer.Google Scholar
Zhang, Z.Q. (2003) Mites of Greenhouses: Identification, Biology and Control. 244 pp. Wallingford, CABI Publishing.Google Scholar