Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T11:12:53.260Z Has data issue: false hasContentIssue false

Genetic variability in esterases and the insecticide resistance in brazilian strains of Oryzaephilus mercator and Oryzaephilus surinamensis (Coleoptera: Silvanidae)

Published online by Cambridge University Press:  01 November 2010

G.A.R. Silva*
Affiliation:
Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900, Maringá-Pr, Brasil
A.S. Lapenta
Affiliation:
Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900, Maringá-Pr, Brasil
*
*Author for correspondence Fax: (44) 30114893 E-mail: [email protected]

Abstract

Oryzaephilus mercator and O. surinamensis are stored grains and processed food pests, the latter being responsible for major economical losses. Polyacrylamide gel electrophoresis was used to analyse esterase patterns during insect development. Seven esterases, three cholinesterases, two carboxylesterases and two acetylesterases, were identified in O. mercator, one of which was proper to adults. Five esterases, of which four were cholinesterases, occurred in O. surinamensis. Strains of O. mercator and O. surinamensis were also exposed to malathion and chlorpyrifos-methyl. According to the LC50 estimates, OmLC-M and OmLA strains of O. mercator and OsLB strain of O. surinamensis were the most resistant to both insecticides. However, higher sensitivity to malathion and chlorpyrifos-methyl has also been verified in some of its esterases. Cholinesterases OmEST-1 and OsEST-5 seem to be involved in this resistance. These results suggest that organophosphate tolerance may be related to genetic variability in esterase isoenzymes.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Athié, I. & Paula, D.C. (2002) Insetos de Grãos Armazenados: Aspectos Biológicos e Identificação. 2nd edn. 244 pp. São Paulo, Brazil, Livraria Varela.Google Scholar
Baker, J.E., Fabrick, J.A. & Zhu, K.Y. (1998) Characterization of esterases in malathion-resistant and susceptible strains of the pteromalid parasitoid Anisopteromalus calandrae. Insect Biochemistry and Molecular Biology 28, 10391050.Google Scholar
Bernardo, A.A. & Bicudo, H.E.M.C. (2009) Variability of esterase patterns in adult flies of the saltans species group of Drosophila (subgenus Sophophora). Genetica 137, 111124.Google Scholar
Bisset Lazcano, J.A., Rodríguez, M.M., San Martín, J.L., Romero, J.E. & Montoya, R. (2009) Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de El Salvador. Revista Panamericana de Salud Pública 26(3), 229234.Google Scholar
Campbell, P.M., Robin, G.C.Q., Court, L.N., Dorrian, S.J., Russell, R.J. & Oakeshott, J.G. (2003) Developmental expression and gene/enzyme identifications in the alpha esterase gene cluster of Drosophila melanogaster. Insect Molecular Biology 12(5), 459471.CrossRefGoogle ScholarPubMed
Ceruti, F.C. & Lázzari, S.M.N. (2003) Utilização de bioensaios e marcadores moleculares para detecção da resistência de coleopteros de produtos armazenados a inseticidas. Revista Brasileira de Entomologia 47(3), 447453.Google Scholar
Chatonnet, A. & Lockridge, O. (1989) Comparison of butyrylcholinesterase and acetylcholinesterase. Biochemical Journal 260, 625634.Google Scholar
Conyers, C.M., MacNicoll, A.D. & Price, N.R. (1998) Purification and characterization of an esterase involved in resistance to organophosphorus insecticides in the saw-toothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae). Insect Biochemistry and Molecular Biology 28, 435448.CrossRefGoogle Scholar
Davis, B.J. (1964) Disc electrophoresis II. Methods and application to human serum proteins. Annals of the New York Academy of Science 72, 404427.CrossRefGoogle Scholar
Guedes, R.N.C., Kambhampati, S., Dover, B.A. & Zhu, K.Y. (1997) Biochemical mechanisms of organophosphate resistance in Rhyzopertha dominica (Coleoptera: Bostrichidae) populations from the United States and Brazil. Bulletin of Entomological Research 87, 581586.CrossRefGoogle Scholar
Hamilton, M.A., Russo, R.C. & Thurston, R.V. (1977) Trimmed Sperman-Karber Method for estimating median Lethal Concentrations in toxicity biossays. Environmental Science and Technology 11(7), 714719.Google Scholar
Haubruge, E., Amichot, M., Cuany, A., Berge, J.B. & Arnaud, L. (2002) Purification and characterization of a carboxylesterase involved in malathion-specific resistance from Tribolium castaneum (Coleoptera: Tenebrionidae). Insect Biochemistry and Molecular Biology 32, 11811190.CrossRefGoogle ScholarPubMed
Healy, M.J., Dumancic, M.M. & Oakeshott, J.G. (1991) Biochemical and Physiological Studies of Soluble Esterases from Drosophila melanogaster. Biochemical Genetics 29(7/8), 365387.CrossRefGoogle ScholarPubMed
Hughes, P.B. & Raftos, D.A. (1985) Genetics of an esterase associated with resistance to organophosphorus insecticides in the sheep blow-fly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Bulletin of Entomological Research 75, 535544.Google Scholar
Lapenta, A.S., Bicudo, H.E.M.C., Ceron, C.R. & Cordeiro, J.A. (1998) Esterase patterns and phylogenetic relationships of species and strains included in the Drosophila buzzatii cluster. Cytobios 96, 95107.Google ScholarPubMed
Lee, S.E. & Lees, E.M. (2001) Biochemical Mechanisms of Resistance in Strains of Oryzaephilus surinamensis (Coleoptera: Silvanidae) Resistant to Malathion and Chlorpyrifos-Methyl. Journal of Economic Entomology 94(3), 706713.CrossRefGoogle ScholarPubMed
Lee, S.E., Lees, E.M. & Campbell, B.C. (2000) Purification and Characterization of an Esterase Conferring Resistance to Fenitrothion in Oryzaephilus surinamensis (L.) (Insecta, Coleoptera, Silvanidae). Journal of Agricultural and Food Chemistry 48(10), 49914996.Google Scholar
Lima-Catelani, A.R.A., Ceron, C.R. & Bicudo, H.E.M.C. (2004) Variation of Genetic Expression During Development, Revealed by Esterase Patterns in Aedes aegypti (Diptera, Culicidae). Biochemical Genetics 42(3/4), 6984.Google Scholar
Menozzi, P., Shi, M.A., Lougarre, A., Tang, Z.H. & Fournier, D. (2004) Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evolutionary Biology 4, 17.Google Scholar
Mikhailov, A.T. & Torrado, M. (2000) Carboxylesterases moonlight in the male reproductive tract: a functional shift pivotal for male fertility. Frontiers in Bioscience 5, 5362.Google Scholar
Oakeshot, J.G., van Papenrecht, E.A., Boyce, T.M., Healy, M.J. & Russell, R.J. (1993) Evolutionary genetics of Drosophila esterases. Genetica 90, 239268.Google Scholar
Rossiter, L.C., Gunning, R.V. & Rose, H.A. (2001a) The Use of Polyacrylamide Gel Electrophoresis for the Investigation and Detection of Fenitrothion and Chlorpyrifos-Methyl Resistance in Oryzaephilus surinamensis (Coleoptera: Silvanidae). Pesticide Biochemistry and Physiology 69, 2734.CrossRefGoogle Scholar
Rossiter, L.C., Conyers, C.M., MacNicoll, A.D. & Rose, H.A. (2001b) Two Qualitatively Different B-Esterases from Two Organophosphate-Resistant Strains of Oryzaephilus surinamensis (Coleoptera: Silvanidae) and Their Roles in Fenitrothion and Chlorpyrifos-Methyl Resistance. Pesticide Biochemistry and Physiology 69, 118130.CrossRefGoogle Scholar
Sekar, V. & Hageman, J.H. (1979) Specificity of the serine protease inhibitor, phenylmethylsulfonyl fluoride. Biochemical and Biophysical Research Communications 89, 474478.Google Scholar
Tavares, M.G., Azeredo-Oliveira, M.T.V. & Ceron, C.R. (1998) Tissue-specific expression of esterases in Triatoma infestans (Triatominae, Heteroptera). Genetics and Molecular Biology 21(4), 461464.CrossRefGoogle Scholar
Wheelock, C.E., Shan, G. & Ottea, J. (2005) Overview of Carboxylesterases and Their Role in the Metabolism of Insecticides. Journal of Pesticide Science 30(2), 7583.CrossRefGoogle Scholar
Yamamoto, K., Chadarevian, A. & Pellegrini, M. (1988) Juvenile hormone action mediated in male accessory glands of Drosophila by calcium and Kinase C. Science 239, 916919.Google Scholar