Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T09:43:51.991Z Has data issue: false hasContentIssue false

Genetic differentiation among various populations of the diamondback moth, Plutella xylostella Lepidoptera Yponomeutidae

Published online by Cambridge University Press:  09 March 2007

A. Pichon
Affiliation:
Laboratoire dynamique de la biodiversité, UMR UPS/CNRS 5172, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
L. Arvanitakis
Affiliation:
CIRAD/AMIS, Laboratoire Entotrop, CSIRO Campus International de Baillarguet, TA 40/L, 34398 Montpellier Cedex 5, France
O. Roux
Affiliation:
Laboratoire dynamique de la biodiversité, UMR UPS/CNRS 5172, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
A.A. Kirk
Affiliation:
USDA/ARS, European Biological Control Laboratory, Montferrier sur Lez, 34398 St Gély du Fesc, France
C. Alauzet
Affiliation:
Laboratoire dynamique de la biodiversité, UMR UPS/CNRS 5172, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
D. Bordat
Affiliation:
CIRAD/AMIS, Laboratoire Entotrop, CSIRO Campus International de Baillarguet, TA 40/L, 34398 Montpellier Cedex 5, France
L. Legal*
Affiliation:
Laboratoire dynamique de la biodiversité, UMR UPS/CNRS 5172, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
*
*Fax 00 33 0 5 61 55 61 96 E-mail: [email protected]

Abstract

Genetic variation among 14 populations of Plutella xylostella (Linnaeus) from USA (Geneva, New York), Brazil (Brasilia), Japan (Okayama), The Philippines (Caragan de Oyo), Uzbekistan (Tashkent), France (Montpellier), Benin (Cotonou), South Africa (Johannesburg), Réunion Island (Montvert), and five localities in Australia (Adelaide, Brisbane, Mareeba, Melbourne, Sydney) were assessed by analysis of allozyme frequencies at seven polymorphic loci. Most of the populations were not in Hardy–Weinberg equilibrium and had a deficit in heterozygotes. The global differentiation among populations was estimated by the fixation index (Fst) at 0.103 for the 14 populations and at 0.047 when populations from Australia and Japan, which differed most and had a strong genetic structure, were excluded from the analysis. By contrast, the populations from Benin (West Africa) and Brazil (South America) were very similar to each other. Genetic differentiation among the populations was not correlated with geographical distance.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allendorf, F.W. & Phelps, S.R. (1981) Use of allelic frequencies to describe population structure. Canadian Journal of Fisheries and Aquatic Science 38, 15071514.CrossRefGoogle Scholar
Bordat, D. & Goudegnon, A.E. (1997) The status of diamondback moth and its natural enemies in the Porto Novo and Cotonou areas in Benin. p. 312 in Sivapragasam, A., Loke, W.H., Hussan, A.K. & Lim, G.S. (Eds) Proceedings of the Third International Workshop on the Management of Diamondback moth and other Crucifer Pests, 29 October–1 November 1996, Kuala Lumpur, Malaysia Malaysian Agricultural Research and Development Institute.Google Scholar
Buès, R., Freuler, J., Toubon, J.F., Gerber, S., Poitout, S. (1994) Stabilité du polymorphisme enzymatique dans les populations d'un Lépidoptère migrant, Agrotis ipsilon. Entomologia Experimentalis et Applicata 73, 187191.Google Scholar
Caprio, M.A. & Tabashnik, B.E. (1992) Allozymes used to estimate gene flow among populations of diamondback moth Lepidoptera Plutellidae in Hawaii. Annals of the Entomological Society of America 21, 808816.Google Scholar
Chapman, J.W., Reynolds, D.R., Smith, A.D., Riley, J.R., Pedgley, D.E. & Woiwod, I.P. (2002) High-altitude migration of the diamondback moth Plutella xylostella to the U.K. a study using radar, aerial netting, and ground trapping. Ecological Entomology 27, 641650.CrossRefGoogle Scholar
Cheng, E.Y. (1981) Insecticide resistance study in Plutella xylostella L. I. developing a sampling method for surveying. Journal of Agricultural Research of China 30, 277284.Google Scholar
Daly, J.C., Gregg, P. (1985) Genetic variation in Heliothis in Australia species identification and gene flow in the two pest species H. armigera Hübner and H. punctigera Wallengren Lepidoptera Noctuidae. Bulletin of Entomological Research 75, 169184.Google Scholar
Dosdall, L., Mason, P., Olfert, O., Kaminski, L. & Keddie, B. (2002) The origins of infestation of diamondback moth, Plutella xylostella L., in canola in western Canada 95 – 100 Melbourne, Australia Department of Natural Resources and Environment.Google Scholar
Harcourt, D.G. (1986) Population dynamics of the diamondback moth in southern Ontario. p 3. Talekar, N.S. & Griggs, T.D. (Eds) 11–15 March1985, Tainan, Taiwan, Asian Veqgetable Research and Development CenterGoogle Scholar
Herrero, S., Ferre, J., Escriche, B. (2001) Mannose phosphate isomerase isoenzymes in Plutella xylostella support common genetic bases of resistance to Bacillus thuringiensis toxins in lepidopteran species. Applied and Environmental Microbiology 67, 979981.Google Scholar
Hillis, D.M., Moritz, C. & Mable, B.K. (1996) Molecular systematics. 620pp. Sunderland, Massachusetts, Sinauer.Google Scholar
Honda, K., Miyahara, Y., Kegasawa, K. (1992) Seasonal abundance and the possibility of spring immigration of the diamondback moth, Plutella xylostella Linnaeus Lepidoptera Yponomeutidae in Morioka City, Northern Japan. Journal of Applied Entomology and Zoology 27, 517525.Google Scholar
Kfir, R. (1998) Origin of the diamondback moth Lepidoptera Plutellidae. Annals of the Entomological Society of America 91, 164167.CrossRefGoogle Scholar
Kim, Y., Kim, K., Kim, N. (1999) Genetic difference between two field populations of Plutella xylostella Linné based on four polymorphic allozymes. Journal of Asia-Pacific Entomology 2, 15.Google Scholar
Lim, G.S. (1986) Biological control of diamondback moth p.159 In Talekar, N.S. & Griggs, T.D. (Eds) Proceedings of the First International Workshop on the Diamondback Moth Management, 11–15 March 1985, Tainan, Taiwan, Asian Vegetable Research and Development CenterGoogle Scholar
Liu, M.Y., Tzeng, Y.J. & Sun, C.N. (1982) Insecticide resistance in the diamondback moth. Journal of Economic Entomology 75, 153155.Google Scholar
Mackenzie, J.M.B. (1958) Invasion of diamondback moth Plutella maculipennis Curtis. Journal of Entomological Science 91, 247250.Google Scholar
Mallet, J., Korman, A., Heckel, D.G., King, P. (1993) Biochemical genetics of Heliothis and Helicoverpa Lepidoptera Noctuidae and evidence for a founder event in Helicoverpa zea. Annals of the Entomological Society of America 86, 189197.CrossRefGoogle Scholar
Miyata, T., Saito, T., Noppun, V. (1986) Studies on the mechanism of diamondback moth resistance to insecticides. p. 347 in Talekar, N.S. & Griggs, T.D. (Eds) Proceedings of the First International Workshop on the Diamondback Moth Management, 11–15 March 1985, Tainan, Taiwan, Asian Vegetable Research and Development CenterGoogle Scholar
Nève, G., Barascud, B., Descimon, H., Baguette, M. (2000) Genetic structure of Proclossiana eunomia populations at the regional scale Lepidoptera, Nymphalidae. Heredity 84, 657666.Google Scholar
Nibouche, S., Buès, R., Toubon, J.F., Poitout, S. (1998) Allozyme polymorphism in the cotton bollworm Helicoverpa armigera Lepidoptera Noctuidae comparison of African and European populations. Heredity 80, 438445.Google Scholar
Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J., Britton-Davidian, J. (1987) Manuel technique de genetique par electrophorese des proteines. 217 pp. Paris, Lavoisier.Google Scholar
Perrier, X. & Jacquemoud-Collet, J.P. 2000 DARwin 3.6.40 CIRAD-Flhor, Montpellier.Google Scholar
Raymond, M., Rousset, F. (1995) GENEPOP version 1.2 population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Sun, C.N., Wu, T.K., Chen, J.S. & Lee, W.T. (1986) Insecticide resistance in diamondback moth. p. 359 in Talekar, N.S. & Griggs, T.D. (Eds) Proceedings of the First International Workshop on the Diamondback Moth Management, 11–15 March 1985, Tainan, Taiwan, Asian Vegetable Research and Development Center.Google Scholar
Tabashnik, B.E., Cushing, N.L. & Johnson, M.W. (1987) Diamondback moth Lepidoptera Plutellidae resistance to insecticides in Hawaii intra-island variation and cross-resistance. Journal of Economic Entomology 80, 10911099.Google Scholar
Talekar, N.S. & Shelton, A.M. (1993) Biology, ecology and management of the diamondback moth. Annual Review of Entomology 38, 275301.CrossRefGoogle Scholar
Tsunoda, S. (1980) Eco-physiology of wild and cultivated forms in Brassicas and allied genera. 109120Tsunoda, S., Hinata, K. & Gomez-Campo, C. (Eds) Brassica crops and wild allies biology and breeding. Japan Scientific Societies Press.Google Scholar
Wainhouse, D. & Juke, M.R. (1997) Geographic variation within populations of Panolis flammea Lepidoptera Noctuidae in Britain. Bulletin of Entomological Research 87, 9599.Google Scholar
Weir, B.S. & Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google Scholar
Wool, D., Gerling, D., Bellotti, A.C. & Morales, F.J. (1993) Esterase electrophoretic variation in Bemisia tabaci Genn. Hom., Aleyrodidae among host plants and localities in Israel. Journal of Applied Entomology 115, 185196.Google Scholar
Wright, S. (1951) The genetical structure of populations. Annals of Eugenics 15, 323354.CrossRefGoogle ScholarPubMed