Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T04:48:51.033Z Has data issue: false hasContentIssue false

Gene cloning and difference analysis of vitellogenin in Neoseiulus barkeri (Hughes)

Published online by Cambridge University Press:  11 July 2017

L. Ding
Affiliation:
Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
F. Chen
Affiliation:
Sinofert Holdings Limited, Henan Branch, Zhengzhou 450000, China
R. Luo
Affiliation:
Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
Q. Pan
Affiliation:
Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
C. Wang
Affiliation:
Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
S. Yu
Affiliation:
Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
L. Cong
Affiliation:
Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
H. Liu
Affiliation:
Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
H. Li
Affiliation:
Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
C. Ran*
Affiliation:
Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
*
*Author for correspondence: Tel: +86-23-6834-9798 Fax: 023-68349005 E-mail: [email protected]

Abstract

Neoseiulus barkeri (HUGHES) is the natural enemy of spider mites, whiteflies and thrips. Screening for chemically-resistant predatory mites is a practical way to balance the contradiction between the pesticide using and biological control. In this study, the number of eggs laid by fenpropathrin-susceptible and resistant strains of N. barkeri was compared. Additionally, we cloned three N. barkeri vitellogenin (Vg) genes and used quantitative real-time polymerase chain reaction to quantify Vg expression in susceptible and resistant strains. The total number of eggs significantly increased in the fenpropathrin-resistant strain. The full-length cDNA cloning of three N. barkeri Vg genes (NbVg1, NbVg2 and NbVg3) revealed that the open reading frames of NbVg1, NbVg2 and NbVg3 were 5571, 5532 and 4728 bp, encoding 1856, 1843 and 1575 amino acids, respectively. The three N. barkeri Vg possessed the Vitellogenin-N domain (or lipoprotein N-terminal domain (LPD_N)), von Willebrand factor type D domain (VWD) and the domain with unknown function 1943 (DUF1943). The NbVg1 and NbVg2 expression levels were significantly higher in the resistant strain than in the susceptible strain, while the NbVg3 expression level was lower in the resistant strain. Thus, we speculate that the increased number of eggs laid by the fenpropathrin-resistant strain of N. barkeri may be a consequence of changes in Vg gene expression.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this study.

References

Agnese, M., Verderame, M., Meo, E.D., Prisco, M., Rosati, L., Limatola, E., Gaudio, R.D., Aceto, S. & Andreuccetti, P. (2013) A network system for vitellogenin synthesis in the mussel Mytilus galloprovincialis (L.). Journal of Cellular Physiology 228, 547555.Google Scholar
Arnaud, L. & Haubruge, E. (2002) Insecticide resistance enhances male reproductive success in a beetle. Evolution 56, 24352444.Google Scholar
Auger, P., Bonafos, R., Kreiter, S. & Delorme, R. (2005) A genetic analysis of mancozeb resistance in Typhlodromus pyri (Acari: Phytoseiidae). Experimental and Applied Acarology 3, 8391.Google Scholar
Banks, C.J. & Needham, P.H. (1970) Comparison of the biology of myzus persi-cae sulz. resistant and susceptible to dimethoate. Annals of Applied Biology 66, 465468.Google Scholar
Bjrnson, S. (2008) Natural enemies of mass-reared predatory mites (family phytoseiidae) used for biological pest control. Experimental and Applied Acarology 46, 299306.CrossRefGoogle Scholar
Blumenthal, T., Squire, M., Kirtland, S., Cane, J., Donegan, M., Spieth, J. & Sharrock, W. (1984) Cloning of a yolk protein gene family from Caenorhabditis elegans . Journal of Molecular Biology 174, 118.CrossRefGoogle ScholarPubMed
Boldbaatar, D., Umemiyashirafuji, R., Liao, M., Tanaka, T., Xuan, X.N. & Fujisaki, K. (2010) Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development. Journal of Insect Physiology 56, 15871598.Google Scholar
Bonafos, R., Serrano, E., Auger, P. & Kreiter, S. (2007) Resistance to deltamethrin, lambda-cyhalothrin and chlorpyriphos-ethyl in some populations of Typhlodromus pyri scheuten and Amblyseius andersoni (Chant) (Acari: Phytoseiidae) from vineyards in the south-west of France. Crop Protection 26, 169172.Google Scholar
El-Khatib, Z.I. & Georghiou, G.P. (1985) Comparative fitness of temephos resistant,-susceptible, and hybrid phenotypes of the southern house mosquito (Diptera: Culicidae). Journal of Economic Entomology 78, 10231029.Google Scholar
Fernando, L.C.P., Aratchige, N.S., Kumari, S.L.M.L., Ap puhamy, P.A.L.D. & Hapuarachchi, D.C.L. (2010) Development of a method for mass rearing of Neoseiulus baraki, a mite predatory on the coconut mite, Aceria guerreronis . Cocos 16, 2236.CrossRefGoogle Scholar
Ferrari, J.A. & Georghiou, G.P. (1981) Effects on insecticidal selection and treatment on reproductive potential of resistant, susceptible, and heterozygous strains of the southern house mosquito. Journal of Economic Entomology 74, 323327.Google Scholar
Fournier, D., Pralavorio, M., Berge, J.B. & Cuany, A. (1985) Pesticide resistance in Phytoseiidae. pp. 423432 in Helle, W. & Sabelis, M.W. (Eds) Spider Mites: Their Biology, Natural Enemies and Control. Amsterdam, Elsevier, Chapter 3. 5.Google Scholar
Furtado, I.P., Toledo, S., de Moraes, G.J., Kreiter, S. & Knapp, M. (2007) Search for effective natural enemies of Tetranychus evansi (Acari: Tetranychidae) in northwest Argentina. Experimental and Applied Acarology 4, 121127.Google Scholar
Grafton-Cardwell, E.E., Ouyang, Y. & Striggow, R.A. (1999) Predacious mites for control of citrus thrips, Scirtothrips citri (Thysanoptera: Thripidae) in nursery citrus. Biological Control 14, 2936.Google Scholar
Haubruge, E. & Arnaud, L. (2001) Fitness consequences of malathion specific resistance in red flour beetle (Coleoptera: Tenebrionidae) and selection for resistance in the absence of malathion. Journal of Economic Entomology 94, 552557.CrossRefGoogle ScholarPubMed
Hayward, A., Takahashi, T., Bendena, W. G., Tobe, S. S. & Hui, J. H. (2010) Comparative genomic and phylogenetic analysis of vitellogenin and other large lipid transfer proteins in metazoans. FEBS Letters . 584, 12731278.Google Scholar
Hessein, N.A. & Parrella, M.P. (1991) Predatory mites help control thrips on floriculture crops. California Agriculture 44, 1921.Google Scholar
Jafari, S., Fathipour, Y. & Faraji, F. (2012) Temperature-dependent development of Neoseiulus barkeri (Acari: Phytoseiidae) on Tetranychus urticae (acari: Tetranychidae) at seven constant temperatures. Insect Science 19, 220228.Google Scholar
Khalil, S.M., Donohue, K.V., Thompson, D.M., Jeffers, L.A., Ananthapadmanaban, U., Sonenshine, D.E., Mitchell, R.D. & Roe, R.M. (2011). Full-length sequence, regulation and developmental studies of a second vitellogenin gene from the American dog tick, Dermacentor variabilis . Journal of Insect Physiology 57, 400408.Google Scholar
Lee, C.Y., Yap, H.H., Chong, N.L. & Lee, R.S.T. (1996) Insecticide resistance and synergism in field collected German cockroaches (Dictyoptera: Blattellidae) in Peninsular Malaysia. Bulletin of Entomological Research 86, 675682.Google Scholar
Lin, C., Chen, F., Yu, S., Ding, L., Yang, J., Luo, R., Tian, H., Li, H., Liu, H. & Ran, C. (2016) Transcriptome and difference analysis of fenpropathrin resistant predatory mite, Neoseiulus barkeri (Hughes). International Journal of Molecular Sciences 17, 704.Google Scholar
Liu, C., Mao, J. & Zeng, F. (2015) Chrysopa septempunctata (Neuroptera: Chrysopidae) vitellogenin functions through effects on egg production and hatching. Journal of Economic Entomology 108, 27792788.Google Scholar
Liu, X., Shen, G., Xu, H. & He, L. (2016) The fenpropathrin resistant Tetranychus cinnabarinus showed increased fecundity with high content of vitellogenin and vitellogenin receptor. Pesticide Biochemistry and Physiology 134, 3138.Google Scholar
Lu, K., Shu, Y., Zhou, J., Zhang, X., Zhang, X., Chen, M., Yao, Q., Zhou, Q. & Zhang, W. (2015) Molecular characterization and RNA interference analysis of vitellogenin receptor from Nilaparvata lugens (Stal). Journal of Insect Physiology 73, 2029.CrossRefGoogle ScholarPubMed
Matsubara, T., Ohkubo, N., Andoh, T., Sullivan, C.V. & Hara, A. (1999) Two forms of vitellogenin, yielding two distinct lipovitellins, play different roles during oocyte maturation and early development of barfin flounder, Verasper moseri, a marine teleost that spawns pelagic eggs. Developmental Biology 213, 1832.CrossRefGoogle Scholar
Melo, A.C., Valle, D., Machado, E.A., Salerno, A.P., Paiva-Silva, G.O., Cunha, E.S.N.L., de Souza, W. & Masuda, H. (2000) Synthesis of vitellogenin by thefollicle cells of Rhodnius prolixus . Insect Biochemistry and Molecular Biology 30, 549557.CrossRefGoogle Scholar
Miyo, T. & Oguma, Y. (2002) Negative correlations between resistance to three organophosphate insecticides and productivity within a natural population of Drosophila melanogaster (Diptera: Drosophilidae). Journal of Economic Entomology 95, 12291238.Google Scholar
Momen, F.M. (1995) Feeding, development and reproduction of Amblyseiu barkeri (Acarina: Phytoseiidae) on various kinds of food substances. Acarologia 36, 101105.Google Scholar
Ni, J., Zeng, Z., Kong, D., Hou, L., Huang, H. & Ke, C. (2014) Vitellogenin of Fujian oyster, Crassostrea angulata: synthesized in the ovary and controlled by estradiol-17. General and Comparative Endocrinology 20, 3543.Google Scholar
Nicastro, R.L., Sato, M.E. & da Silva, M.Z. (2011) Fitness costs associated with milbemectin resistance in the two-spotted spider mite Tetranychus urticae . International Journal of Pest Management 57, 223228.Google Scholar
Nomikou, M., Janssen, A., Schraag, R. & Sabelis, M.W. (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci . Experimental and Applied Acarology 25, 271291.Google Scholar
Pathan, A.K., Sayyed, A.H., Aslam, M., Liu, T.X., Razzaq, M. & Gillani, W.A. (2010) Resistance to pyrethroids and organophosphates increased fitness and predation potential of Chrysoperla carnae (Neuroptera: Chrysopidae). Journal of Economic Entomology 103, 823834.Google Scholar
Qiu, J., He, Y., Zhang, J., Kang, K., Li, T. & Zhang, W. (2016) Discovery and functional identification of fecundity-related genes in the brown planthopper by large-scale RNA interference. Insect Molecular Biology 25, 724733.Google Scholar
Raikhel, A.S. & Dhadialla, T.S. (1992) Accumulation of yolk proteins in insect oocytes. Entomology 37, 217251.Google Scholar
Richardson, M. (1998) Pesticides – friend or foe? Water Science and Technology 37, 1925.Google Scholar
Ross, M.H. (1991) A comparison of reproduction and longevity in pyrethroidresistant and susceptible German cockroach (Blattodea: Blattellidae) field-collected strains. Journal of Entomological Science 26, 408418.Google Scholar
Salman, S.Y. & Ay, R. (2013) Analysis of hexythiazox resistance mechanisms in a laboratory selected predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Turkish Journal of Entomology 3, 409422.Google Scholar
Schip, F.D.V.H., Samallo, J., Broos, J., Ophuis, J., Mojet, M., Gruber, M. & Geert, A.B. (1987) Nucleotide sequence of a chicken vitellogenin gene and derived amino acid sequence of the encoded yolk precursor protein. Journal of Molecular Biology 196, 245260.Google Scholar
Shu, Y., Zhou, J., Tang, W., Lu, K., Zhou, Q. & Zhang, G. (2009) Molecular characterization and expression pattern of Spodoptera litura (Lepidoptera: Noctuidae) vitellogenin, and its response to lead stress. Journal of Insect Physiology 55, 608616.CrossRefGoogle ScholarPubMed
Shu, Y.H., Wang, J.W., Lu, K., Zhou, J.L., Zhou, Q. & Zhang, G.R. (2011) The first vitellogenin receptor from a lepidopteran insect: molecular characterization, expression patterns and RNA interference analysis. Insect Molecular Biology 20, 6173.CrossRefGoogle ScholarPubMed
Silva, R. & Fischer, A.H. (1989) The major and minor chicken vitellogenin genes are each adjacent to partially deleted pseudogene copies of the other. Molecular and Cellular Biology 9, 35573562.Google Scholar
Smolenaars, M. M., Madsen, O., Rodenburg, K. W. & Dj, V. D. H. (2007) Molecular diversity and evolution of the large lipid transfer protein superfamily. Journal of Lipid Research 48, 489502.Google Scholar
Stocco, R.S., Sato, M.E. & Santos, T.L. (2016) Stability and fitness costs associated with etoxazole resistance in Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology 69, 113.Google Scholar
Tran, T.K.A., Macfarlane, G.R., Kong, R.Y.C., OConnor, W.A. & Yu, R.M.K. (2016) Mechanistic insights into induction of vitellogenin gene expression by estrogens in Sydney rock oysters, Saccostrea glomerata . Aquatic Toxicology 174, 146158.CrossRefGoogle ScholarPubMed
Trapp, J., Armengaud, J., Gaillard, J.C., Pible, O., Chaumot, A. & Geffard, O. (2016) High-throughput proteome dynamics for discovery of key proteins in sentinel species: unsuspected vitellogenins diversity in the crustacean Gammarus fossarum . Journal of Proteomics 146, 207214.CrossRefGoogle ScholarPubMed
Tufail, M. & Takeda, M. (2005) Molecular cloning, characterization and regulation of the cockroach vitellogenin receptor during oogenesis. Insect Molecular Biology 14, 389401.Google Scholar
Tufail, M. & Takeda, M. (2008) Molecular characteristics of insect vitellogenins. Journal of Insect Physiology 54, 14471458.Google Scholar
Tuovinen, T. & Lindqvist, I. (2010) Maintenance of predatory phytoseiid mites for preventive control of strawberry tarsonemid mite phytonemus pallidus in strawberry plant propagation. Biological Control 54, 119125.Google Scholar
Veerana, M., Kubera, A. & Ngernsiri, L. (2014) Analysis of the vitellogenin gene of rice moth, Corcyra cephalonica Stainton. Archives of Insect Biochemistry and Physiology, 87, 126147.CrossRefGoogle ScholarPubMed
Wahli, W., Dawid, I.B., Wyler, T., Jaggi, R.B., Weber, R. & Gu, R. (1979). Vitellogenin in Xenopus laevis is encoded in a small family of genes. Cell 1, 535549.Google Scholar
Yao, H., Zheng, W., Tariq, K. & Zhang, H. (2014) Functional and numerical responses of three species of predatory Phytoseiid mites (Acari: Phytoseiidae) to Thrips flavidulus (Thysanoptera: Thripidae). Neotropical Entomology 43, 437445.Google Scholar
Zhai, Y., Sun, Z., Zhang, J., Kang, K., Chen, J. & Zhang, W. (2015) Activation of the tor signalling pathway by glutamine regulates insect fecundity. Scientic Reports, 5, 10694.Google Scholar
Zhang, S., Wang, S., Li, H. & Li, L. (2010) Vitellogenin, a multivalent sensor and an antimicrobial effector. International Journal of Biochemistry & Cell Biology 43, 303305.Google Scholar
Zhang, W.N., Xiao, H.J., Liang, G. M., Guo, Y.Y. & Wu, K.M. (2014) Tradeoff between reproduction and resistance evolution to bt-toxin in Helicoverpa armigera: regulated by vitellogenin gene expression. Bulletin of Entomological Research 104, 444452.Google Scholar