Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T16:52:28.992Z Has data issue: false hasContentIssue false

Feeding performance and life table parameters of Khapra Beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) on various barley cultivars

Published online by Cambridge University Press:  14 March 2017

A. Golizadeh*
Affiliation:
Department of Plant Protection, Faculty of Agricultural Science and Natural Resources, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
Z. Abedi
Affiliation:
Department of Plant Protection, Faculty of Agricultural Science and Natural Resources, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
*
*Author for correspondence Phone: +98-451-33510140 Fax: +98-451-33512204 E-mail: [email protected]

Abstract

The Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is a common pest of cereal grains and other stored products. In this study, the effects of ten barley cultivars (Abidar, Bahman, Line20, Line22, Line30, Lisuei, Lokht11, Makuyi, Sahand, and Sahraa) were evaluated on life table parameters and nutritional indices of T. granarium under the following laboratory conditions: 33 ± 1°C, 60 ± 5% RH, and a photoperiod of 14: 10 (L: D) h. Life history parameters of T. granarium could be appropriate indices in resistance and susceptibility evaluation of barley cultivars. The maximum survival rate of immature stages was observed on Makuyi and Lisuei cultivars and the minimum rate was on Abidar and Line22 cultivars. The shortest development time was on Makuyi cultivar and the longest on Line22 cultivar. Pupal weight was ranged from 2.56 mg on Lokht11 to 4.86 mg on Makuyi. Fecundity and egg-hatching rates were highest on Lisuei cultivar and the adults were long-lived on Makuyi cultivar. The highest rm values were observed on Makuyi and Lisuei cultivars but lower value of it resulted from rearing of T. granarium on Line22 cultivar (0.0350 female per female day−1). The results showed that T. granarium larvae fed on Makuyi cultivar had higher values of relative consumption rate and relative growth rate. The results indicated that Makuyi and Lisuei cultivars were relatively susceptible barley cultivars and Line22 was the most inappropriate cultivar for feeding of T. granarium, which could prove useful in the development of Integrated Pest Management programs for this pest.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmedani, M.S., Haque, M.I., Afzal, S.N., Aslam, M. & Naz, S. (2009) Varietal changes in nutritional composition of wheat kernel (Triticum aestivum) caused by Khapra beetle infestation. Pakistan Journal of Botany 41(3), 15111519.Google Scholar
Al-Iraqi, R.R., Dallal-Bashi, Z.I. & Al-Safar, R.S. (2015) Population density of Khapra beetle, Trogoderma granarium Everts (Dermestidae: Coleoptera), on grains and spikes of wheat and barley. Jordan Journal of Agricultural Sciences 11(2), 393398.Google Scholar
American Association of Cereal Chemists. (1996) Approved Methods of the AACC. St. Paul, MN, AACC International.Google Scholar
Bagheri Zenouz, A. (1997) Storage Pests and their Control. Tehran, Sepehr Press, p. 309.Google Scholar
Banks, H.J. (1977) Distribution and establishment of Trogoderma granarium Everts (Coleoptera: Dermestidae): climatic and other influences. Journal of Stored Products Research 13, 183202.CrossRefGoogle Scholar
Bernays, E.A. & Chapman, R.F. (1994) Host Plant Selection by Phytophagous Insects. New York, Chapman and Hall.CrossRefGoogle Scholar
Birch, L.C. (1948) The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17, 1526.CrossRefGoogle Scholar
Borzoui, E. & Naseri, B. (2016) Wheat cultivars affecting life history and digestive amylolytic activity of Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae). Bulletin of Entomological Research 106(4), 464473.CrossRefGoogle ScholarPubMed
Borzoui, E., Naseri, B. & Rahimi Namin, F. (2015) Different diets affecting biology and digestive physiology of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). Journal of Stored Products Research 62, 17.CrossRefGoogle Scholar
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Burges, H.D. (2008) Development of the Khapra beetle, Trogoderma granarium, in the lower part of its temperature range. Journal of Stored Products Research 44, 3235.CrossRefGoogle Scholar
Carey, J.R. (1993) Applied Demography for Biologists with Special Emphasis on Insects. New York, Oxford University Press.CrossRefGoogle Scholar
Daryaei, G.M., Darvishi, S., Etebari, K. & Salehi, M. (2007) Host preference and nutrition efficiency of the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae), on different poplar clones. Turkish Journal of Agriculture 32, 469476.Google Scholar
Golizadeh, A. & Abedi, Z. (2016) Comparative performance of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) on various wheat cultivars. Journal of Stored Products Research 69, 159165.CrossRefGoogle Scholar
Golizadeh, A. & Razmjou, J. (2010) Comparative life history and fecundity of Phthorimaea operculella (Lepidoptera: Gelechiidae) on leaves and tubers of different potato cultivars. Journal of Economic Entomology 105(5), 18091815.CrossRefGoogle Scholar
Golizadeh, A., Esmaeili, N., Razmjou, J. & Rafiee-Dastjerdi, H. (2014) Comparative life tables of the potato tuberworm, Phthorimaea operculella, on leaves and tubers of different potato cultivars. Journal of Insect Science 14, 42.CrossRefGoogle ScholarPubMed
Golizadeh, A., Abedi, Z., Borzoui, E., Golikhajeh, N. & Jafary, M. (2016) Susceptibility of five sugar beet cultivars to the black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae). Neotropical Entomology 45(4), 427432.CrossRefGoogle Scholar
Hemati, S.A., Naseri, B., Ganbalani, G.N., Dastjerdi, H.R. & Golizadeh, A. (2012) Effect of different host plants on nutritional indices of the pod borer, Helicoverpa armigera . Journal of Insect Science 12, 55.CrossRefGoogle ScholarPubMed
Hosseininejad, A.S. & Naseri, B. (2015) Nutritional and growth indices of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) on different corn hybrids. Arthropod-Plant Interactions 9, 633640.CrossRefGoogle Scholar
Hosseininaveh, V., Bandani, A., Azmayeshfard, P., Hosseinkhani, S. & Kazemi, M. (2007) Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). Journal of Stored Products Research 43, 515522.CrossRefGoogle Scholar
Hwang, S.Y., Liu, C.H. & Shen, T.C. (2008) Effects of plant nutrient availability and host plant species on the performance of two Pieris butterflies (Lepidoptera: Pieridae). Biochemical Systematics and Ecology 36, 505513.CrossRefGoogle Scholar
Khodabandeh, N. (2003) Cereals. 7th edn. Tehran, Tehran University Press.Google Scholar
Kulkarni, N.V., Gupta, S., Kataria, R. & Sathyanarayana, N. (2015) Morphometric analysis and reproductive system studies of Trogoderma granarium Everts (Coleoptera: Dermestidae). International Journals of Scientific Research Publications 5(8), 18.Google Scholar
Li, Y., Hill, C.B. & Hartman, G.L. (2004) Effect of three resistant soybean genotypes on the realized fecundity, mortality and maturation of soybean aphid (Homoptera, Aphididae). Journal of Economic Entomology 97, 11061111.CrossRefGoogle Scholar
Liu, Z.D., Li, D.M., Gong, P.Y. & Wu, K.J. (2004) Life table studies of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on different host plants. Environmental Entomology 33, 15701576.CrossRefGoogle Scholar
Lorenzen, J.H., Balbyshev, N.F., Lafta, A.M., Casper, H., Tian, X. & Sagredo, B. (2001) Resistant potato selections contain leptine and inhibit development of the colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 94, 12601267.CrossRefGoogle ScholarPubMed
Maia, A.H.N., Alferdo, J.B.L. & Campanhola, C. (2000) Statistical inference on associated fecundity life table parameters using jackknife technique: computational aspects. Journal of Economic Entomology 93, 511518.CrossRefGoogle ScholarPubMed
Mebarkia, A., Rahbe, Y., Guechi, A., Bouras, A. & Makhlouf, M. (2010) Susceptibility of twelve soft wheat varieties (Triticum aestivum) to Sitophilus granarius (L.) (Coleoptera: Curculionidae). Agriculture and Biology Journal of North America 1(4), 571578.Google Scholar
Meyer, J.S., Igersoll, C.G., Mac Donald, L.L. & Boyce, M.S. (1986) Estimating uncertainty in population growth: Jackknife vs. bootstrap techniques. Ecology 67, 11561166.CrossRefGoogle Scholar
Mohamed, H.A. (2003) The susceptibility of some wheat grain varieties to Trogoderma granarium Everts attack. MSc Thesis, University of Khartoum, Sudan.Google Scholar
Musa, A.K. & Dike, M.C. (2009) Life cycle, morphometrics and damage assessment of the Khapra beetle, (Coleoptera: Dermestidae) on stored groundnut. Journal of Agricultural Science 54(2), 135142.Google Scholar
Naseri, B. & Borzoui, E. (2016) Life cycle and digestive physiology of Trogoderma granarium (Coleoptera: Dermestidae) on various wheat cultivars. Annals of the Entomological Society of America 109(6), 831838.CrossRefGoogle Scholar
Naseri, B., Golparvar, Z., Razmjou, J. & Golizadeh, A. (2014) Age-stage, two-sex life table of Helicoverpa armigera (Lepidoptera: Noctuidae) on different bean cultivars. Journal of Agricultural Science and Technology 16, 1932.Google Scholar
Neelhirajan, S., Karunakram, S., Jayas, D. & White, N. (2007) Detection techniques for stored product insects in grain. International Food Control 18, 157162.CrossRefGoogle Scholar
Panda, N. & Khush, G.S. (1995) Host Plant Resistance to Insects. Oxon, CAB International.Google Scholar
Rahimi Namin, F., Naseri, B. & Razmjou, J. (2014) Nutritional performance and activity of some digestive enzymes of the cotton bollworm, Helicoverpa armigera, in response to seven tested bean cultivars. Journal of Insect Science 14, 93 (1–18).Google Scholar
Rao, N.S., Sharma, K., Samyal, A. & Tomar, S.M.S. (2004) Wheat grain variability to infestation by Khapra beetle, Trogoderma granarium Everts. Annals of Plant Protection Science 12, 288291.Google Scholar
Razmjou, J. & Golizadeh, A. (2010) Performance of corn leaf aphid, Rhopalosiphum maidis (Fitch) (Homoptera: Aphididae) on selected maize hybrids under laboratory conditions. Applied Entomology and Zoology 45, 267274.CrossRefGoogle Scholar
Saliheen, K.M.K. (2005) Life cycle of the Khapra beetle Trogoderma granarium (Everts.) (Coleoptera: Dermistidae) reared on some cereal crops and their relative susceptibility to the insects attack. MSc Thesis, University of Khartoum, Sudan.Google Scholar
Sarfraz, M., Dosdall, L.M. & Keddie, B.A. (2006) Diamondback moth-host plant interactions: implications for pest management. Crop Protection 25, 625636.CrossRefGoogle Scholar
SAS Institute. (2002) The SAS System for Windows. Cary, NC, SAS Institute.Google Scholar
Sayed, T.S., Hirad, F.Y. & Abro, G.H. (2006) Resistance of different stored wheat varieties to Khapra beetle, Trogoderma granarium (Everts) and lesser grain borer, Rhizopertha dominica (Fabricus). Pakistan Journal of Biological Science 9, 15671571.CrossRefGoogle Scholar
Scriber, J.M. & Slansky, F. (1981) The nutritional ecology of immature insects. Annual Review of Entomology 26, 183211.CrossRefGoogle Scholar
Sedaratian, A., Fathipour, Y. & Moharramipour, S. (2009) Evaluation of resistance in 14 soybean genotypes to Tetranychus urticae (Acari: Tetranychidae). Journal of Pest Science 82, 163170.CrossRefGoogle Scholar
Seifi, S., Naseri, B. & Razmjou, J. (2015) Nutritional physiology of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) fed on various barley cultivars. Journal of Economic Entomology 109, 472477.CrossRefGoogle Scholar
SPSS Inc. (2007) SPSS Base 16.0 user's Guide. Chicago, SPSS Incorporation.Google Scholar
Stuart, M.K., Barak, A.V. & Burkholder, W.E. (1994) Immunological identification of Trogoderma granarium Everts (Coleoptera: Dermestidae). Journal of Stored Products Research 30(1), 916.CrossRefGoogle Scholar
Tingey, W.M. (1986) Techniques for evaluating plant resistance to insects. pp. 251284 in Miller, J.R., Miller, T.A. & Berenbaum, M. (Ed.) Insect Plant Interactions. New York, Springer.CrossRefGoogle Scholar
Tsai, J.H. & Wang, J.J. (2001) Effects of host plant on biology and life table parameters of Aphis spiraecola (Hom.: Aphididae). Environmental Entomology 30, 4450.CrossRefGoogle Scholar
Waldbauer, G.P. (1968) The consumption and utilization of food by insects. Advance in Insect Physiology 5, 229288.CrossRefGoogle Scholar