Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T10:43:48.088Z Has data issue: false hasContentIssue false

Expression and characterization of a lipase-related protein in the malpighian tubules of the Chinese oak silkworm, Antheraea pernyi

Published online by Cambridge University Press:  14 June 2016

L. Wang
Affiliation:
College of Life Science, Anhui Agricultural University, Hefei 230036, China
J. Li
Affiliation:
College of Life Science, Anhui Agricultural University, Hefei 230036, China
X. Zhao
Affiliation:
College of Life Science, Anhui Agricultural University, Hefei 230036, China
C. Qian
Affiliation:
College of Life Science, Anhui Agricultural University, Hefei 230036, China
G. Wei
Affiliation:
College of Life Science, Anhui Agricultural University, Hefei 230036, China
B. Zhu
Affiliation:
College of Life Science, Anhui Agricultural University, Hefei 230036, China
C. Liu*
Affiliation:
College of Life Science, Anhui Agricultural University, Hefei 230036, China
*
*Author for correspondence Phone: +86 551 6578-6360 Fax: +86 551 6578-6201 E-mail: [email protected]

Abstract

Lipases are ubiquitous enzymes in nature, which play a crucial role in fat metabolism by catalyzing the hydrolysis of triacylglycerol to free fatty acids and glycerol. However, reports concerning insect lipase are rare. In this study, we studied the expression and activity of a lipase-related protein from Antheraea pernyi (ApLRP). Recombinant ApLRP was expressed in Escherichia coli cells and used to raise rabbit anti-ApLRP polyclonal antibodies. ApLRP mRNA and protein expression were abundant in the midgut and malpighian tubules, respectively. After challenge with four different microorganisms (E. coli, Beauveria bassiana, Micrococcus luteus and nuclear polyhedrosis virus), the expression levels of ApLRP mRNA in midgut were inducted significantly compared with the control. The different pathogens induced different ApLRP gene expression patterns. The optimum temperature and pH for the enzyme's activity were 35°C and 7.0, respectively. ApLRP activity was stimulated in the presence of Mg2+, Na+, Ca2+ and b-mercaptoethanol; while Zn2+, Cu2+ and Fe3+ inhibited its activity. Detergents such as SDS, glycerol and Tween-20 increased the lipase activity by 20–30%. Our results indicated that ApLRP might play an important role in the innate immunity of insects.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, S., Huang, Z. & Ren, S.X. (2009) Production and extraction of extracellular lipase from the entomopathogenic fungus Isaria fumosoroseus (Cordycipitaceae; Hypocreales). Biocontrol Science and Technology 19, 8189.Google Scholar
Ali, S., Ren, S.X. & Huang, Z. (2014) Extracellular lipase of an entomopathogenic fungus effecting larvae of a scale insect. Journal of Basic Microbiology 54, 11481159.Google Scholar
Aoki, J., Inoue, A., Makide, K., Saiki, N. & Arai, H. (2007) Structure and function of extracellular phospholipase A(1) belonging to the pancreatic lipase gene family. Biochimie 89, 197204.Google Scholar
BoekeMa, B.K.H.L., Beselin, A., Breuer, M., Hauer, B., Koster, M., Rosenau, F., Jaeger, K.E. & Tommassen, J. (2007) Hexadecane and Tween 80 stimulate lipase production in Burkholdetia glumae by different mechanisms. Applied and Environmental Microbiology 73, 38383844.Google Scholar
Brabcova, J., Prchalova, D., Demianova, Z., Bucankova, A., Vogel, H., Valterova, I., Pichova, I. & Zarevucka, M. (2013) Characterization of neutral lipase BT-1 isolated from the labial gland of Bombus terrestris males. PLoS ONE 8, e80066.CrossRefGoogle ScholarPubMed
Bradoo, S., Saxena, R.K. & Gupta, R. (1999) Two acidothermotolerant lipases from new variants of Bacillus spp. World Journal of Microbiology & Biotechnology 15, 8791.CrossRefGoogle Scholar
Collins, T., Azevedo-Silva, J., da Costa, A., Branca, F., Machado, R. & Casal, M. (2013) Batch production of a silk-elastin-like protein in E. coli BL21 (DE3): key parameters for optimisation. Microbial Cell Factories 12, 12.Google Scholar
De Gregorio, E., Spellman, P.T., Tzou, P., Rubin, G.M. & Lemaitre, B. (2002) The Toll and Imd pathways are the major regulators of the immune response in Drosophila . EMBO Journal 21, 25682579.Google Scholar
Delkash-Roudsari, S., Zibaee, A. & AbbaciMozhdehi, M.R. (2014) Determination of lipase activity in the larval midgut of Bacterocera oleae Gmelin (Diptera: Tephritidae). ISJ-Invertebrate Survival Journal 11, 6672.Google Scholar
Donovan, R.S., Robinson, C.W. & Glick, B.R. (1996) Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. Journal of Industrial Microbiology 16, 145154.Google Scholar
Franken, L.P.G., Marcon, N.S., Treichel, H., Oliveira, D., Freire, D.M.G., Dariva, C., Destain, J. & Oliveira, J.V. (2010) Effect of treatment with compressed propane on lipases hydrolytic activity. Food and Bioprocess Technology 3, 511520.Google Scholar
Gupta, R., Gupta, N. & Rathi, P. (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology 64, 763781.CrossRefGoogle ScholarPubMed
Holmquist, M. (2000) Alpha/beta-hydrolase fold enzymes: structures, functions and mechanisms. Current Protein & Peptide Science 1, 209235.Google Scholar
Horne, I., Haritos, V.S. & Oakeshott, J.G. (2009) Comparative and functional genomics of lipases in holometabolous insects. Insect Biochemistry and Molecular Biology 39, 547567.Google Scholar
Ishii, K., Hamamoto, H., Kamimura, M., Nakamura, Y., Noda, H., Imamura, K., Mita, K. & Sekimizu, K. (2010) Insect cytokine paralytic peptide (PP) induces cellular and humoral immune responses in the Silkworm Bombyx mori . Journal of Biological Chemistry 285, 2863528642.Google Scholar
Jaeger, K.E. & Reetz, M.T. (1998) Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology 16, 396403.Google Scholar
Jeon, J.H., Kim, J.T., Kim, Y.J., Kim, H.K., Lee, H.S., Kang, S.G., Kim, S.J. & Lee, J.H. (2009) Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Applied Microbiology and Biotechnology 81, 865874.Google Scholar
Joseph, B., Ramteke, P.W. & Thomas, G. (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnology Advances 26, 457470.Google Scholar
Lee, S.Y. & Rhee, J.S. (1993) Production and partial purification of a lipase from Pseudomonas putida 3SK. Enzyme & Microbial Technology 15, 617623.Google Scholar
Lima, V.M.G., Krieger, N., Mitchell, D.A. & Fontana, J.D. (2004) Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochemical Engineering Journal 18, 6571.Google Scholar
Liu, F., Wu, X., Li, L., Liu, Z. & Wang, Z. (2013) Expression, purification and characterization of two truncated peste des petits ruminants virus matrix proteins in Escherichia coli, and production of polyclonal antibodies against this protein. Protein Expression and Purification 91, 19.CrossRefGoogle ScholarPubMed
Livak, K.J. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-delta delta CT Method. Methods 25, 402408.Google Scholar
Marbach, A. & Bettenbrock, K. (2012) lac operon induction in Escherichia coli: systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA. Journal of Biotechnology 157, 8288.Google Scholar
Nawani, N. & Kaur, J. (2007) Studies on lipolytic isoenzymes from a thermophilic Bacillus sp.: production, purification and biochemical characterization. Enzyme and Microbial Technology 40, 881887.CrossRefGoogle Scholar
Ortiz-Urquiza, A. & Keyhani, N.O. (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4, 357374.Google Scholar
Park, H., Lee, K.S., Chi, Y.M. & Jeong, S.W. (2005) Effects of methanol on the catalytic properties of porcine pancreatic lipase. Journal of Microbiology and Biotechnology 15, 296301.Google Scholar
Pistillo, D., Manzi, A., Tino, A., Boyl, P.P., Graziani, F. & Malva, C. (1998) The Drosophila melanogaster lipase homologs: a gene family with tissue and developmental specific expression. Journal of Molecular Biology 276, 877885.Google Scholar
Ponnuvel, K.M., Nakazawa, H., Furukawa, S., Asaoka, A., Ishibashi, J., Tanaka, H. & Yamakawa, M. (2003) A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. Journal of Virology 77, 1072510729.CrossRefGoogle ScholarPubMed
Quyen, D.T., Le, T.T.G., Nguyen, T.T., Oh, T.K. & Lee, J.K. (2005) High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1. Protein Expression and Purification 39, 97106.Google Scholar
Ranjbar, M., Zibaee, A. & Sendi, J.J. (2015) Purification and characterization of a digestive lipase in the midgut of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae). Frontiers in Life Science 8, 6470.Google Scholar
Reetz, M.T. (2002) Lipases as practical biocatalysts. Current Opinion in Chemical Biology 6, 145150.Google Scholar
Reis, P., Holmberg, K., Watzke, H., Leser, M.E. & Miller, R. (2009) Lipases at interfaces: a review. Advances in Colloid and Interface Science 147–48, 237250.CrossRefGoogle Scholar
Rudus, I., Terai, H., Shimizu, T., Kojima, H., Hattori, K., Nishimori, Y., Tsukagoshi, H., Kamiya, Y., Seo, M., Nakamura, K., Kepczynski, J. & Ishiguro, S. (2014) Wound-induced expression of defective in anther dehiscence1 and DAD1-like lipase genes is mediated by both coronatine insensitive1-dependent and independent pathways in Arabidopsis thaliana . Plant Cell Reports 33, 849860.Google Scholar
Saxena, R.K., Davidson, W.S., Sheoran, A. & Giri, B. (2003) Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus . Process Biochemistry 39, 239247.CrossRefGoogle Scholar
Severac, E., Galy, O., Turon, F., Monsan, P. & Marty, A. (2011) Continuous lipase-catalyzed production of esters from crude high-oleic sunflower oil. Bioresource Technology 102, 49544961.Google Scholar
Silva, W.O.B., Santi, L., Berger, M., Pinto, A.F.M., Guimaraes, J.A., Schrank, A. & Vainstein, M.H. (2009) Characterization of a spore surface lipase from the biocontrol agent Metarhizium anisopliae . Process Biochemistry 44, 829834.Google Scholar
Sparks, M.E., Blackburn, M.B., Kuhar, D. & Gundersen-Rindal, D.E. (2013) Transcriptome of the Lymantria dispar (Gypsy moth) larval midgut in response to infection by Bacillus thuringiensis . PLoS ONE 8, e61190 Google Scholar
Supakdamrongkul, P., Bhumiratana, A. & Wiwat, C. (2010) Characterization of an extracellular lipase from the biocontrol fungus, Nomuraea rileyi MJ, and its toxicity toward Spodoptera litura . Journal of Invertebrate Pathology 105, 228235.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
Tang, Q.Y. & Zhang, C.X. (2013) Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science 20, 254260.Google Scholar
Tapadia, M.G. & Verma, P. (2012) Immune response and anti-microbial peptides expression in malpighian tubules of Drosophila melanogaster is under developmental regulation. PLoS ONE 7, e40714 Google Scholar
Treichel, H., de Oliveira, D., Mazutti, M.A., Di Luccio, M. & Oliveira, J.V. (2010) A review on microbial lipases production. Food and Bioprocess Technology 3, 182196.Google Scholar
van Pouderoyen, G., Eggert, T., Jaeger, K.E. & Dijkstra, B.W. (2001) The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. Journal of Molecular Biology 309, 215226.Google Scholar
Yang, A.H. & Yeh, K.W. (2005) Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1). Planta 221, 493501.Google Scholar
Yu, M.R., Qin, S.W. & Tan, T.W. (2007) Purification and characterization of the extracellular lipase Lip2 from Yarrowia lipolytica . Process Biochemistry 42, 384391.CrossRefGoogle Scholar
Zibaee, A. (2012) A digestive lipase of Pieris brassicae L. (Lepidoptera: Pieridae): purification, characterization, and host plants effects. Archives of Insect Biochemistry and Physiology 81, 119.Google Scholar
Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A. & Zechner, R. (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 13831386.Google Scholar